The Kauffman Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 17: Line 17:
<!--$$?Kauffman$$-->
<!--$$?Kauffman$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout1|n=1|s=Kauffman}}
n = 1 |
Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.
n1 = 2 |
{{HelpAndAbout2|n=2|s=Kauffman}}
in = <nowiki>Kauffman</nowiki> |
The Kauffman program was written by Scott Morrison.
out= <nowiki>Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.</nowiki> |
{{HelpAndAbout3}}
about= <nowiki>The Kauffman program was written by Scott Morrison.</nowiki>}}
<!--END-->
<!--END-->


Line 27: Line 28:
<!--$$Kauffman[Knot[5, 2]][a, z]$$-->
<!--$$Kauffman[Knot[5, 2]][a, z]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=3}}
{{InOut|
n = 3 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki></pre>
in = <nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki> |
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
out= <nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
5 3 7 3 4 4 6 4
5 3 7 3 4 4 6 4
2 a z + a z + a z + a z</nowiki></pre>
2 a z + a z + a z + a z</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 45: Line 46:
<!--$$K = TorusKnot[8, 3];$$-->
<!--$$K = TorusKnot[8, 3];$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In1|n=4}}
{{In|
n = 4 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = TorusKnot[8, 3];</nowiki></pre>
in = <nowiki>K = TorusKnot[8, 3];</nowiki>}}
{{In2}}
<!--END-->
<!--END-->


Line 55: Line 56:
}]$$-->
}]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=5}}
{{InOut|
n = 5 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Simplify[{
in = <nowiki>Simplify[{
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
Jones[K][q]
Jones[K][q]
}]</nowiki></pre>
}]</nowiki> |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> 7 9 16 7 9 16
out= <nowiki> 7 9 16 7 9 16
{q + q - q , q + q - q }</nowiki></pre>
{q + q - q , q + q - q }</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->



Revision as of 13:16, 30 August 2005


The Kauffman polynomial [math]\displaystyle{ F(K)(a,z) }[/math] (see [Kauffman]) of a knot or link [math]\displaystyle{ K }[/math] is [math]\displaystyle{ a^{-w(K)}L(K) }[/math] where [math]\displaystyle{ w(L) }[/math] is the writhe of [math]\displaystyle{ K }[/math] (see How is the Jones Polynomial Computed?) and where [math]\displaystyle{ L(K) }[/math] is the regular isotopy invariant defined by the skein relations

[math]\displaystyle{ L(s_+)=aL(s), \qquad L(s_-)=a^{-1}L(s) }[/math]

(here [math]\displaystyle{ s }[/math] is a strand and [math]\displaystyle{ s_\pm }[/math] is the same strand with a [math]\displaystyle{ \pm }[/math] kink added) and

[math]\displaystyle{ L(T_1)+L(T_2) = z\left(L(T_3)+L(T_4)\right) }[/math]

(here [math]\displaystyle{ T_1 }[/math], [math]\displaystyle{ T_2 }[/math], [math]\displaystyle{ T_3 }[/math] and [math]\displaystyle{ T_4 }[/math] are Backoverslash symbol.gif, Slashoverback symbol.gif, Vsmoothing symbol.gif and Hsmoothing symbol.gif, respectively), and by the initial condition [math]\displaystyle{ L(U)=1 }[/math] where [math]\displaystyle{ U }[/math] is the unknot BigCirc symbol.gif.

KnotTheory` knows about the Kauffman polynomial:

(For In[1] see Setup)

In[1]:= ?Kauffman
Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.
In[2]:= Kauffman::about
The Kauffman program was written by Scott Morrison.

Thus, for example, here's the Kauffman polynomial of the knot 5_2:

In[3]:= Kauffman[Knot[5, 2]][a, z]
Out[3]= 2 4 6 5 7 2 2 4 2 6 2 3 3 -a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + 5 3 7 3 4 4 6 4 2 a z + a z + a z + a z

It is well known that the Jones polynomial is related to the Kauffman polynomial via

[math]\displaystyle{ J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4}+q^{-1/4}) }[/math],

where [math]\displaystyle{ K }[/math] is some knot or link and where [math]\displaystyle{ c }[/math] is the number of components of [math]\displaystyle{ K }[/math]. Let us verify this fact for the torus knot T(8,3):

In[4]:= K = TorusKnot[8, 3];
In[5]:= Simplify[{ (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)], Jones[K][q] }]
Out[5]= 7 9 16 7 9 16 {q + q - q , q + q - q }

[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.