10 9: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-9,7,-10,8,-3,6,-5,4,-2,9,-7,10,-8/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=9|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-9,7,-10,8,-3,6,-5,4,-2,9,-7,10,-8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 72: | Line 36: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{20}-2 q^{19}+4 q^{17}-5 q^{16}+8 q^{14}-10 q^{13}+15 q^{11}-18 q^{10}+22 q^8-23 q^7-q^6+25 q^5-21 q^4-5 q^3+24 q^2-15 q-8+19 q^{-1} -8 q^{-2} -9 q^{-3} +12 q^{-4} -2 q^{-5} -6 q^{-6} +5 q^{-7} -2 q^{-9} + q^{-10} </math> | |
|||
coloured_jones_3 = <math>q^{39}-2 q^{38}+q^{36}+3 q^{35}-3 q^{34}-3 q^{33}+q^{32}+6 q^{31}-q^{30}-6 q^{29}-2 q^{28}+6 q^{27}+4 q^{26}-5 q^{25}-3 q^{24}+q^{23}+3 q^{22}+5 q^{20}-6 q^{19}-8 q^{18}+5 q^{17}+15 q^{16}-5 q^{15}-21 q^{14}+5 q^{13}+21 q^{12}-24 q^{10}-2 q^9+20 q^8+11 q^7-21 q^6-13 q^5+14 q^4+24 q^3-14 q^2-25 q+6+32 q^{-1} -3 q^{-2} -30 q^{-3} -5 q^{-4} +29 q^{-5} +8 q^{-6} -23 q^{-7} -12 q^{-8} +18 q^{-9} +11 q^{-10} -10 q^{-11} -11 q^{-12} +7 q^{-13} +7 q^{-14} -3 q^{-15} -5 q^{-16} +2 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{20}-2 q^{19}+4 q^{17}-5 q^{16}+8 q^{14}-10 q^{13}+15 q^{11}-18 q^{10}+22 q^8-23 q^7-q^6+25 q^5-21 q^4-5 q^3+24 q^2-15 q-8+19 q^{-1} -8 q^{-2} -9 q^{-3} +12 q^{-4} -2 q^{-5} -6 q^{-6} +5 q^{-7} -2 q^{-9} + q^{-10} </math>|J3=<math>q^{39}-2 q^{38}+q^{36}+3 q^{35}-3 q^{34}-3 q^{33}+q^{32}+6 q^{31}-q^{30}-6 q^{29}-2 q^{28}+6 q^{27}+4 q^{26}-5 q^{25}-3 q^{24}+q^{23}+3 q^{22}+5 q^{20}-6 q^{19}-8 q^{18}+5 q^{17}+15 q^{16}-5 q^{15}-21 q^{14}+5 q^{13}+21 q^{12}-24 q^{10}-2 q^9+20 q^8+11 q^7-21 q^6-13 q^5+14 q^4+24 q^3-14 q^2-25 q+6+32 q^{-1} -3 q^{-2} -30 q^{-3} -5 q^{-4} +29 q^{-5} +8 q^{-6} -23 q^{-7} -12 q^{-8} +18 q^{-9} +11 q^{-10} -10 q^{-11} -11 q^{-12} +7 q^{-13} +7 q^{-14} -3 q^{-15} -5 q^{-16} +2 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math>|J4=<math>q^{64}-2 q^{63}+q^{61}+5 q^{59}-7 q^{58}-q^{57}+17 q^{54}-13 q^{53}-5 q^{52}-7 q^{51}-3 q^{50}+38 q^{49}-12 q^{48}-7 q^{47}-26 q^{46}-17 q^{45}+64 q^{44}+q^{43}+4 q^{42}-52 q^{41}-52 q^{40}+79 q^{39}+25 q^{38}+43 q^{37}-68 q^{36}-107 q^{35}+68 q^{34}+39 q^{33}+104 q^{32}-54 q^{31}-158 q^{30}+35 q^{29}+29 q^{28}+157 q^{27}-22 q^{26}-179 q^{25}+8 q^{24}+4 q^{23}+178 q^{22}+3 q^{21}-177 q^{20}+q^{19}-15 q^{18}+173 q^{17}+11 q^{16}-161 q^{15}+10 q^{14}-31 q^{13}+151 q^{12}+14 q^{11}-133 q^{10}+25 q^9-46 q^8+111 q^7+13 q^6-92 q^5+50 q^4-57 q^3+59 q^2+q-53+78 q^{-1} -49 q^{-2} +17 q^{-3} -25 q^{-4} -37 q^{-5} +94 q^{-6} -22 q^{-7} +4 q^{-8} -44 q^{-9} -43 q^{-10} +81 q^{-11} +3 q^{-12} +16 q^{-13} -38 q^{-14} -49 q^{-15} +47 q^{-16} +7 q^{-17} +25 q^{-18} -16 q^{-19} -38 q^{-20} +19 q^{-21} +18 q^{-23} -2 q^{-24} -19 q^{-25} +8 q^{-26} -3 q^{-27} +7 q^{-28} + q^{-29} -7 q^{-30} +3 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math>|J5=<math>q^{95}-2 q^{94}+q^{92}+2 q^{90}+q^{89}-5 q^{88}-3 q^{87}+3 q^{86}+2 q^{85}+6 q^{84}+4 q^{83}-11 q^{82}-11 q^{81}+q^{80}+7 q^{79}+15 q^{78}+13 q^{77}-14 q^{76}-27 q^{75}-11 q^{74}+8 q^{73}+31 q^{72}+31 q^{71}-8 q^{70}-43 q^{69}-42 q^{68}-2 q^{67}+50 q^{66}+66 q^{65}+18 q^{64}-58 q^{63}-95 q^{62}-46 q^{61}+60 q^{60}+132 q^{59}+92 q^{58}-52 q^{57}-177 q^{56}-154 q^{55}+25 q^{54}+216 q^{53}+241 q^{52}+24 q^{51}-257 q^{50}-322 q^{49}-96 q^{48}+260 q^{47}+425 q^{46}+181 q^{45}-264 q^{44}-490 q^{43}-268 q^{42}+227 q^{41}+549 q^{40}+350 q^{39}-198 q^{38}-574 q^{37}-406 q^{36}+160 q^{35}+577 q^{34}+446 q^{33}-124 q^{32}-579 q^{31}-462 q^{30}+108 q^{29}+559 q^{28}+465 q^{27}-83 q^{26}-549 q^{25}-466 q^{24}+79 q^{23}+519 q^{22}+458 q^{21}-49 q^{20}-501 q^{19}-448 q^{18}+33 q^{17}+448 q^{16}+439 q^{15}+9 q^{14}-412 q^{13}-412 q^{12}-32 q^{11}+333 q^{10}+381 q^9+79 q^8-278 q^7-335 q^6-83 q^5+189 q^4+273 q^3+110 q^2-136 q-213-81 q^{-1} +76 q^{-2} +137 q^{-3} +71 q^{-4} -53 q^{-5} -89 q^{-6} -20 q^{-7} +41 q^{-8} +41 q^{-9} -7 q^{-10} -53 q^{-11} -30 q^{-12} +43 q^{-13} +66 q^{-14} +28 q^{-15} -42 q^{-16} -87 q^{-17} -44 q^{-18} +42 q^{-19} +83 q^{-20} +58 q^{-21} -14 q^{-22} -77 q^{-23} -68 q^{-24} -3 q^{-25} +52 q^{-26} +64 q^{-27} +23 q^{-28} -31 q^{-29} -51 q^{-30} -28 q^{-31} +9 q^{-32} +36 q^{-33} +28 q^{-34} -3 q^{-35} -18 q^{-36} -17 q^{-37} -8 q^{-38} +10 q^{-39} +14 q^{-40} +2 q^{-41} -5 q^{-42} -2 q^{-43} -5 q^{-44} +6 q^{-46} -3 q^{-48} + q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math>|J6=<math>q^{132}-2 q^{131}+q^{129}+2 q^{127}-2 q^{126}+3 q^{125}-7 q^{124}+4 q^{122}+7 q^{120}-5 q^{119}+6 q^{118}-19 q^{117}+8 q^{115}+17 q^{113}-5 q^{112}+14 q^{111}-38 q^{110}-4 q^{109}+6 q^{108}-4 q^{107}+27 q^{106}+4 q^{105}+35 q^{104}-57 q^{103}-2 q^{102}-4 q^{101}-22 q^{100}+23 q^{99}+11 q^{98}+66 q^{97}-68 q^{96}+18 q^{95}-6 q^{94}-43 q^{93}+5 q^{92}+11 q^{91}+85 q^{90}-94 q^{89}+38 q^{88}-4 q^{87}-44 q^{86}+19 q^{85}+48 q^{84}+114 q^{83}-159 q^{82}-16 q^{81}-80 q^{80}-72 q^{79}+95 q^{78}+220 q^{77}+274 q^{76}-187 q^{75}-166 q^{74}-351 q^{73}-284 q^{72}+123 q^{71}+528 q^{70}+686 q^{69}-q^{68}-270 q^{67}-774 q^{66}-771 q^{65}-76 q^{64}+777 q^{63}+1240 q^{62}+447 q^{61}-146 q^{60}-1104 q^{59}-1354 q^{58}-499 q^{57}+787 q^{56}+1649 q^{55}+931 q^{54}+167 q^{53}-1179 q^{52}-1741 q^{51}-904 q^{50}+616 q^{49}+1785 q^{48}+1208 q^{47}+446 q^{46}-1083 q^{45}-1861 q^{44}-1111 q^{43}+453 q^{42}+1757 q^{41}+1275 q^{40}+575 q^{39}-982 q^{38}-1840 q^{37}-1167 q^{36}+362 q^{35}+1696 q^{34}+1263 q^{33}+634 q^{32}-895 q^{31}-1780 q^{30}-1203 q^{29}+249 q^{28}+1602 q^{27}+1251 q^{26}+736 q^{25}-734 q^{24}-1665 q^{23}-1272 q^{22}+20 q^{21}+1397 q^{20}+1216 q^{19}+913 q^{18}-433 q^{17}-1431 q^{16}-1332 q^{15}-319 q^{14}+1037 q^{13}+1080 q^{12}+1084 q^{11}-21 q^{10}-1034 q^9-1273 q^8-648 q^7+560 q^6+774 q^5+1108 q^4+356 q^3-524 q^2-1006 q-784+128 q^{-1} +343 q^{-2} +889 q^{-3} +509 q^{-4} -84 q^{-5} -594 q^{-6} -638 q^{-7} -67 q^{-8} -14 q^{-9} +520 q^{-10} +380 q^{-11} +102 q^{-12} -261 q^{-13} -347 q^{-14} - q^{-15} -124 q^{-16} +244 q^{-17} +149 q^{-18} +51 q^{-19} -161 q^{-20} -165 q^{-21} +123 q^{-22} -44 q^{-23} +178 q^{-24} +51 q^{-25} -20 q^{-26} -199 q^{-27} -161 q^{-28} +114 q^{-29} +12 q^{-30} +194 q^{-31} +92 q^{-32} +27 q^{-33} -179 q^{-34} -186 q^{-35} +17 q^{-36} -36 q^{-37} +140 q^{-38} +118 q^{-39} +104 q^{-40} -79 q^{-41} -130 q^{-42} -28 q^{-43} -85 q^{-44} +42 q^{-45} +69 q^{-46} +107 q^{-47} -6 q^{-48} -50 q^{-49} -7 q^{-50} -70 q^{-51} -9 q^{-52} +13 q^{-53} +60 q^{-54} +8 q^{-55} -12 q^{-56} +14 q^{-57} -32 q^{-58} -12 q^{-59} -5 q^{-60} +23 q^{-61} +2 q^{-62} -5 q^{-63} +12 q^{-64} -9 q^{-65} -4 q^{-66} -4 q^{-67} +8 q^{-68} - q^{-69} -4 q^{-70} +5 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math>|J7=<math>q^{175}-2 q^{174}+q^{172}+2 q^{170}-2 q^{169}+q^{167}-4 q^{166}+q^{165}+2 q^{164}+7 q^{162}-4 q^{161}-5 q^{160}+2 q^{159}-10 q^{158}+4 q^{157}+5 q^{156}+17 q^{154}-3 q^{153}-7 q^{152}-q^{151}-26 q^{150}+7 q^{148}-4 q^{147}+34 q^{146}+10 q^{145}+7 q^{144}+11 q^{143}-49 q^{142}-21 q^{141}-16 q^{140}-28 q^{139}+36 q^{138}+28 q^{137}+52 q^{136}+69 q^{135}-31 q^{134}-37 q^{133}-65 q^{132}-110 q^{131}-17 q^{130}+4 q^{129}+88 q^{128}+178 q^{127}+80 q^{126}+38 q^{125}-79 q^{124}-218 q^{123}-157 q^{122}-140 q^{121}+14 q^{120}+245 q^{119}+251 q^{118}+259 q^{117}+89 q^{116}-200 q^{115}-283 q^{114}-398 q^{113}-272 q^{112}+68 q^{111}+253 q^{110}+500 q^{109}+477 q^{108}+159 q^{107}-89 q^{106}-492 q^{105}-657 q^{104}-470 q^{103}-246 q^{102}+322 q^{101}+741 q^{100}+799 q^{99}+709 q^{98}+73 q^{97}-617 q^{96}-1044 q^{95}-1278 q^{94}-698 q^{93}+240 q^{92}+1129 q^{91}+1837 q^{90}+1462 q^{89}+390 q^{88}-939 q^{87}-2250 q^{86}-2297 q^{85}-1256 q^{84}+516 q^{83}+2479 q^{82}+3033 q^{81}+2154 q^{80}+137 q^{79}-2416 q^{78}-3588 q^{77}-3041 q^{76}-887 q^{75}+2183 q^{74}+3905 q^{73}+3729 q^{72}+1594 q^{71}-1792 q^{70}-3979 q^{69}-4205 q^{68}-2202 q^{67}+1379 q^{66}+3918 q^{65}+4468 q^{64}+2605 q^{63}-1036 q^{62}-3750 q^{61}-4540 q^{60}-2865 q^{59}+768 q^{58}+3591 q^{57}+4546 q^{56}+2971 q^{55}-619 q^{54}-3459 q^{53}-4482 q^{52}-3010 q^{51}+525 q^{50}+3352 q^{49}+4430 q^{48}+3034 q^{47}-463 q^{46}-3278 q^{45}-4374 q^{44}-3049 q^{43}+379 q^{42}+3163 q^{41}+4322 q^{40}+3109 q^{39}-246 q^{38}-3007 q^{37}-4240 q^{36}-3197 q^{35}+22 q^{34}+2773 q^{33}+4124 q^{32}+3300 q^{31}+274 q^{30}-2402 q^{29}-3922 q^{28}-3444 q^{27}-685 q^{26}+1949 q^{25}+3645 q^{24}+3528 q^{23}+1132 q^{22}-1318 q^{21}-3221 q^{20}-3588 q^{19}-1652 q^{18}+631 q^{17}+2687 q^{16}+3507 q^{15}+2095 q^{14}+149 q^{13}-1976 q^{12}-3279 q^{11}-2476 q^{10}-923 q^9+1198 q^8+2888 q^7+2633 q^6+1580 q^5-344 q^4-2271 q^3-2604 q^2-2100 q-444+1600 q^{-1} +2314 q^{-2} +2307 q^{-3} +1094 q^{-4} -829 q^{-5} -1825 q^{-6} -2306 q^{-7} -1525 q^{-8} +196 q^{-9} +1250 q^{-10} +2003 q^{-11} +1657 q^{-12} +318 q^{-13} -652 q^{-14} -1582 q^{-15} -1579 q^{-16} -563 q^{-17} +197 q^{-18} +1087 q^{-19} +1299 q^{-20} +615 q^{-21} +102 q^{-22} -688 q^{-23} -965 q^{-24} -488 q^{-25} -205 q^{-26} +396 q^{-27} +675 q^{-28} +323 q^{-29} +168 q^{-30} -280 q^{-31} -478 q^{-32} -153 q^{-33} -92 q^{-34} +242 q^{-35} +402 q^{-36} +94 q^{-37} +26 q^{-38} -269 q^{-39} -395 q^{-40} -94 q^{-41} -18 q^{-42} +256 q^{-43} +399 q^{-44} +147 q^{-45} +78 q^{-46} -196 q^{-47} -389 q^{-48} -205 q^{-49} -144 q^{-50} +117 q^{-51} +316 q^{-52} +203 q^{-53} +206 q^{-54} + q^{-55} -224 q^{-56} -189 q^{-57} -225 q^{-58} -59 q^{-59} +130 q^{-60} +116 q^{-61} +193 q^{-62} +107 q^{-63} -41 q^{-64} -62 q^{-65} -159 q^{-66} -106 q^{-67} +12 q^{-68} +15 q^{-69} +91 q^{-70} +81 q^{-71} +21 q^{-72} +22 q^{-73} -63 q^{-74} -66 q^{-75} -12 q^{-76} -17 q^{-77} +27 q^{-78} +28 q^{-79} +11 q^{-80} +31 q^{-81} -12 q^{-82} -28 q^{-83} -6 q^{-84} -11 q^{-85} +8 q^{-86} +5 q^{-87} -3 q^{-88} +16 q^{-89} + q^{-90} -8 q^{-91} -2 q^{-92} -4 q^{-93} +4 q^{-94} + q^{-95} -5 q^{-96} +4 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math>}} |
|||
coloured_jones_4 = <math>q^{64}-2 q^{63}+q^{61}+5 q^{59}-7 q^{58}-q^{57}+17 q^{54}-13 q^{53}-5 q^{52}-7 q^{51}-3 q^{50}+38 q^{49}-12 q^{48}-7 q^{47}-26 q^{46}-17 q^{45}+64 q^{44}+q^{43}+4 q^{42}-52 q^{41}-52 q^{40}+79 q^{39}+25 q^{38}+43 q^{37}-68 q^{36}-107 q^{35}+68 q^{34}+39 q^{33}+104 q^{32}-54 q^{31}-158 q^{30}+35 q^{29}+29 q^{28}+157 q^{27}-22 q^{26}-179 q^{25}+8 q^{24}+4 q^{23}+178 q^{22}+3 q^{21}-177 q^{20}+q^{19}-15 q^{18}+173 q^{17}+11 q^{16}-161 q^{15}+10 q^{14}-31 q^{13}+151 q^{12}+14 q^{11}-133 q^{10}+25 q^9-46 q^8+111 q^7+13 q^6-92 q^5+50 q^4-57 q^3+59 q^2+q-53+78 q^{-1} -49 q^{-2} +17 q^{-3} -25 q^{-4} -37 q^{-5} +94 q^{-6} -22 q^{-7} +4 q^{-8} -44 q^{-9} -43 q^{-10} +81 q^{-11} +3 q^{-12} +16 q^{-13} -38 q^{-14} -49 q^{-15} +47 q^{-16} +7 q^{-17} +25 q^{-18} -16 q^{-19} -38 q^{-20} +19 q^{-21} +18 q^{-23} -2 q^{-24} -19 q^{-25} +8 q^{-26} -3 q^{-27} +7 q^{-28} + q^{-29} -7 q^{-30} +3 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math> | |
|||
coloured_jones_5 = <math>q^{95}-2 q^{94}+q^{92}+2 q^{90}+q^{89}-5 q^{88}-3 q^{87}+3 q^{86}+2 q^{85}+6 q^{84}+4 q^{83}-11 q^{82}-11 q^{81}+q^{80}+7 q^{79}+15 q^{78}+13 q^{77}-14 q^{76}-27 q^{75}-11 q^{74}+8 q^{73}+31 q^{72}+31 q^{71}-8 q^{70}-43 q^{69}-42 q^{68}-2 q^{67}+50 q^{66}+66 q^{65}+18 q^{64}-58 q^{63}-95 q^{62}-46 q^{61}+60 q^{60}+132 q^{59}+92 q^{58}-52 q^{57}-177 q^{56}-154 q^{55}+25 q^{54}+216 q^{53}+241 q^{52}+24 q^{51}-257 q^{50}-322 q^{49}-96 q^{48}+260 q^{47}+425 q^{46}+181 q^{45}-264 q^{44}-490 q^{43}-268 q^{42}+227 q^{41}+549 q^{40}+350 q^{39}-198 q^{38}-574 q^{37}-406 q^{36}+160 q^{35}+577 q^{34}+446 q^{33}-124 q^{32}-579 q^{31}-462 q^{30}+108 q^{29}+559 q^{28}+465 q^{27}-83 q^{26}-549 q^{25}-466 q^{24}+79 q^{23}+519 q^{22}+458 q^{21}-49 q^{20}-501 q^{19}-448 q^{18}+33 q^{17}+448 q^{16}+439 q^{15}+9 q^{14}-412 q^{13}-412 q^{12}-32 q^{11}+333 q^{10}+381 q^9+79 q^8-278 q^7-335 q^6-83 q^5+189 q^4+273 q^3+110 q^2-136 q-213-81 q^{-1} +76 q^{-2} +137 q^{-3} +71 q^{-4} -53 q^{-5} -89 q^{-6} -20 q^{-7} +41 q^{-8} +41 q^{-9} -7 q^{-10} -53 q^{-11} -30 q^{-12} +43 q^{-13} +66 q^{-14} +28 q^{-15} -42 q^{-16} -87 q^{-17} -44 q^{-18} +42 q^{-19} +83 q^{-20} +58 q^{-21} -14 q^{-22} -77 q^{-23} -68 q^{-24} -3 q^{-25} +52 q^{-26} +64 q^{-27} +23 q^{-28} -31 q^{-29} -51 q^{-30} -28 q^{-31} +9 q^{-32} +36 q^{-33} +28 q^{-34} -3 q^{-35} -18 q^{-36} -17 q^{-37} -8 q^{-38} +10 q^{-39} +14 q^{-40} +2 q^{-41} -5 q^{-42} -2 q^{-43} -5 q^{-44} +6 q^{-46} -3 q^{-48} + q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{132}-2 q^{131}+q^{129}+2 q^{127}-2 q^{126}+3 q^{125}-7 q^{124}+4 q^{122}+7 q^{120}-5 q^{119}+6 q^{118}-19 q^{117}+8 q^{115}+17 q^{113}-5 q^{112}+14 q^{111}-38 q^{110}-4 q^{109}+6 q^{108}-4 q^{107}+27 q^{106}+4 q^{105}+35 q^{104}-57 q^{103}-2 q^{102}-4 q^{101}-22 q^{100}+23 q^{99}+11 q^{98}+66 q^{97}-68 q^{96}+18 q^{95}-6 q^{94}-43 q^{93}+5 q^{92}+11 q^{91}+85 q^{90}-94 q^{89}+38 q^{88}-4 q^{87}-44 q^{86}+19 q^{85}+48 q^{84}+114 q^{83}-159 q^{82}-16 q^{81}-80 q^{80}-72 q^{79}+95 q^{78}+220 q^{77}+274 q^{76}-187 q^{75}-166 q^{74}-351 q^{73}-284 q^{72}+123 q^{71}+528 q^{70}+686 q^{69}-q^{68}-270 q^{67}-774 q^{66}-771 q^{65}-76 q^{64}+777 q^{63}+1240 q^{62}+447 q^{61}-146 q^{60}-1104 q^{59}-1354 q^{58}-499 q^{57}+787 q^{56}+1649 q^{55}+931 q^{54}+167 q^{53}-1179 q^{52}-1741 q^{51}-904 q^{50}+616 q^{49}+1785 q^{48}+1208 q^{47}+446 q^{46}-1083 q^{45}-1861 q^{44}-1111 q^{43}+453 q^{42}+1757 q^{41}+1275 q^{40}+575 q^{39}-982 q^{38}-1840 q^{37}-1167 q^{36}+362 q^{35}+1696 q^{34}+1263 q^{33}+634 q^{32}-895 q^{31}-1780 q^{30}-1203 q^{29}+249 q^{28}+1602 q^{27}+1251 q^{26}+736 q^{25}-734 q^{24}-1665 q^{23}-1272 q^{22}+20 q^{21}+1397 q^{20}+1216 q^{19}+913 q^{18}-433 q^{17}-1431 q^{16}-1332 q^{15}-319 q^{14}+1037 q^{13}+1080 q^{12}+1084 q^{11}-21 q^{10}-1034 q^9-1273 q^8-648 q^7+560 q^6+774 q^5+1108 q^4+356 q^3-524 q^2-1006 q-784+128 q^{-1} +343 q^{-2} +889 q^{-3} +509 q^{-4} -84 q^{-5} -594 q^{-6} -638 q^{-7} -67 q^{-8} -14 q^{-9} +520 q^{-10} +380 q^{-11} +102 q^{-12} -261 q^{-13} -347 q^{-14} - q^{-15} -124 q^{-16} +244 q^{-17} +149 q^{-18} +51 q^{-19} -161 q^{-20} -165 q^{-21} +123 q^{-22} -44 q^{-23} +178 q^{-24} +51 q^{-25} -20 q^{-26} -199 q^{-27} -161 q^{-28} +114 q^{-29} +12 q^{-30} +194 q^{-31} +92 q^{-32} +27 q^{-33} -179 q^{-34} -186 q^{-35} +17 q^{-36} -36 q^{-37} +140 q^{-38} +118 q^{-39} +104 q^{-40} -79 q^{-41} -130 q^{-42} -28 q^{-43} -85 q^{-44} +42 q^{-45} +69 q^{-46} +107 q^{-47} -6 q^{-48} -50 q^{-49} -7 q^{-50} -70 q^{-51} -9 q^{-52} +13 q^{-53} +60 q^{-54} +8 q^{-55} -12 q^{-56} +14 q^{-57} -32 q^{-58} -12 q^{-59} -5 q^{-60} +23 q^{-61} +2 q^{-62} -5 q^{-63} +12 q^{-64} -9 q^{-65} -4 q^{-66} -4 q^{-67} +8 q^{-68} - q^{-69} -4 q^{-70} +5 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_7 = <math>q^{175}-2 q^{174}+q^{172}+2 q^{170}-2 q^{169}+q^{167}-4 q^{166}+q^{165}+2 q^{164}+7 q^{162}-4 q^{161}-5 q^{160}+2 q^{159}-10 q^{158}+4 q^{157}+5 q^{156}+17 q^{154}-3 q^{153}-7 q^{152}-q^{151}-26 q^{150}+7 q^{148}-4 q^{147}+34 q^{146}+10 q^{145}+7 q^{144}+11 q^{143}-49 q^{142}-21 q^{141}-16 q^{140}-28 q^{139}+36 q^{138}+28 q^{137}+52 q^{136}+69 q^{135}-31 q^{134}-37 q^{133}-65 q^{132}-110 q^{131}-17 q^{130}+4 q^{129}+88 q^{128}+178 q^{127}+80 q^{126}+38 q^{125}-79 q^{124}-218 q^{123}-157 q^{122}-140 q^{121}+14 q^{120}+245 q^{119}+251 q^{118}+259 q^{117}+89 q^{116}-200 q^{115}-283 q^{114}-398 q^{113}-272 q^{112}+68 q^{111}+253 q^{110}+500 q^{109}+477 q^{108}+159 q^{107}-89 q^{106}-492 q^{105}-657 q^{104}-470 q^{103}-246 q^{102}+322 q^{101}+741 q^{100}+799 q^{99}+709 q^{98}+73 q^{97}-617 q^{96}-1044 q^{95}-1278 q^{94}-698 q^{93}+240 q^{92}+1129 q^{91}+1837 q^{90}+1462 q^{89}+390 q^{88}-939 q^{87}-2250 q^{86}-2297 q^{85}-1256 q^{84}+516 q^{83}+2479 q^{82}+3033 q^{81}+2154 q^{80}+137 q^{79}-2416 q^{78}-3588 q^{77}-3041 q^{76}-887 q^{75}+2183 q^{74}+3905 q^{73}+3729 q^{72}+1594 q^{71}-1792 q^{70}-3979 q^{69}-4205 q^{68}-2202 q^{67}+1379 q^{66}+3918 q^{65}+4468 q^{64}+2605 q^{63}-1036 q^{62}-3750 q^{61}-4540 q^{60}-2865 q^{59}+768 q^{58}+3591 q^{57}+4546 q^{56}+2971 q^{55}-619 q^{54}-3459 q^{53}-4482 q^{52}-3010 q^{51}+525 q^{50}+3352 q^{49}+4430 q^{48}+3034 q^{47}-463 q^{46}-3278 q^{45}-4374 q^{44}-3049 q^{43}+379 q^{42}+3163 q^{41}+4322 q^{40}+3109 q^{39}-246 q^{38}-3007 q^{37}-4240 q^{36}-3197 q^{35}+22 q^{34}+2773 q^{33}+4124 q^{32}+3300 q^{31}+274 q^{30}-2402 q^{29}-3922 q^{28}-3444 q^{27}-685 q^{26}+1949 q^{25}+3645 q^{24}+3528 q^{23}+1132 q^{22}-1318 q^{21}-3221 q^{20}-3588 q^{19}-1652 q^{18}+631 q^{17}+2687 q^{16}+3507 q^{15}+2095 q^{14}+149 q^{13}-1976 q^{12}-3279 q^{11}-2476 q^{10}-923 q^9+1198 q^8+2888 q^7+2633 q^6+1580 q^5-344 q^4-2271 q^3-2604 q^2-2100 q-444+1600 q^{-1} +2314 q^{-2} +2307 q^{-3} +1094 q^{-4} -829 q^{-5} -1825 q^{-6} -2306 q^{-7} -1525 q^{-8} +196 q^{-9} +1250 q^{-10} +2003 q^{-11} +1657 q^{-12} +318 q^{-13} -652 q^{-14} -1582 q^{-15} -1579 q^{-16} -563 q^{-17} +197 q^{-18} +1087 q^{-19} +1299 q^{-20} +615 q^{-21} +102 q^{-22} -688 q^{-23} -965 q^{-24} -488 q^{-25} -205 q^{-26} +396 q^{-27} +675 q^{-28} +323 q^{-29} +168 q^{-30} -280 q^{-31} -478 q^{-32} -153 q^{-33} -92 q^{-34} +242 q^{-35} +402 q^{-36} +94 q^{-37} +26 q^{-38} -269 q^{-39} -395 q^{-40} -94 q^{-41} -18 q^{-42} +256 q^{-43} +399 q^{-44} +147 q^{-45} +78 q^{-46} -196 q^{-47} -389 q^{-48} -205 q^{-49} -144 q^{-50} +117 q^{-51} +316 q^{-52} +203 q^{-53} +206 q^{-54} + q^{-55} -224 q^{-56} -189 q^{-57} -225 q^{-58} -59 q^{-59} +130 q^{-60} +116 q^{-61} +193 q^{-62} +107 q^{-63} -41 q^{-64} -62 q^{-65} -159 q^{-66} -106 q^{-67} +12 q^{-68} +15 q^{-69} +91 q^{-70} +81 q^{-71} +21 q^{-72} +22 q^{-73} -63 q^{-74} -66 q^{-75} -12 q^{-76} -17 q^{-77} +27 q^{-78} +28 q^{-79} +11 q^{-80} +31 q^{-81} -12 q^{-82} -28 q^{-83} -6 q^{-84} -11 q^{-85} +8 q^{-86} +5 q^{-87} -3 q^{-88} +16 q^{-89} + q^{-90} -8 q^{-91} -2 q^{-92} -4 q^{-93} +4 q^{-94} + q^{-95} -5 q^{-96} +4 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[12, 3, 13, 4], X[2, 15, 3, 16], |
|||
X[14, 5, 15, 6], X[4, 13, 5, 14], X[18, 10, 19, 9], X[20, 12, 1, 11], |
X[14, 5, 15, 6], X[4, 13, 5, 14], X[18, 10, 19, 9], X[20, 12, 1, 11], |
||
X[8, 18, 9, 17], X[10, 20, 11, 19]]</nowiki></pre></td></tr> |
X[8, 18, 9, 17], X[10, 20, 11, 19]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -9, 7, -10, 8, -3, 6, -5, 4, -2, 9, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -9, 7, -10, 8, -3, 6, -5, 4, -2, 9, |
|||
-7, 10, -8]</nowiki></pre></td></tr> |
-7, 10, -8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 20, 4, 2, 8, 10]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, -2, 1, -2, -2, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 4, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 9]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 7 2 3 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 4, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 9]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 7 2 3 4 |
|||
-7 - t + -- - -- + - + 7 t - 5 t + 3 t - t |
-7 - t + -- - -- + - + 7 t - 5 t + 3 t - t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 9]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
1 - 2 z - 7 z - 5 z - z</nowiki></pre></td></tr> |
1 - 2 z - 7 z - 5 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 9]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 9]], KnotSignature[Knot[10, 9]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 9]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 3 2 3 4 5 6 7 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 9]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 3 2 3 4 5 6 7 |
|||
-4 + q - -- + - + 6 q - 6 q + 6 q - 5 q + 3 q - 2 q + q |
-4 + q - -- + - + 6 q - 6 q + 6 q - 5 q + 3 q - 2 q + q |
||
2 q |
2 q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 9]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 9]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -4 2 4 6 8 12 14 16 20 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 9]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -4 2 4 6 8 12 14 16 20 |
|||
q + q + q - q + 2 q - q - q - q + q + q</nowiki></pre></td></tr> |
q + q + q - q + 2 q - q - q - q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 9]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6 |
|||
2 4 2 7 z 16 z 4 5 z 17 z 6 z |
2 4 2 7 z 16 z 4 5 z 17 z 6 z |
||
3 + -- - -- + 7 z + ---- - ----- + 5 z + ---- - ----- + z + -- - |
3 + -- - -- + 7 z + ---- - ----- + 5 z + ---- - ----- + z + -- - |
||
Line 155: | Line 105: | ||
2 2 |
2 2 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 9]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
2 4 z 2 z 2 z 2 2 z z 8 z 22 z |
2 4 z 2 z 2 z 2 2 z z 8 z 22 z |
||
3 + -- + -- + -- - --- - --- - a z - 8 z - ---- + -- - ---- - ----- + |
3 + -- + -- + -- - --- - --- - a z - 8 z - ---- + -- - ---- - ----- + |
||
Line 186: | Line 135: | ||
2 3 a |
2 3 a |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 9]], Vassiliev[3][Knot[10, 9]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 9]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 2 1 2 2 q |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 9]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 2 1 2 2 q |
|||
4 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
4 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 3 3 3 3 2 2 q t t |
7 4 5 3 3 3 3 2 2 q t t |
||
Line 201: | Line 148: | ||
11 4 11 5 13 5 15 6 |
11 4 11 5 13 5 15 6 |
||
2 q t + q t + q t + q t</nowiki></pre></td></tr> |
2 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 9], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 5 6 2 12 9 8 19 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 5 6 2 12 9 8 19 2 |
|||
-8 + q - -- + -- - -- - -- + -- - -- - -- + -- - 15 q + 24 q - |
-8 + q - -- + -- - -- - -- + -- - -- - -- + -- - 15 q + 24 q - |
||
9 7 6 5 4 3 2 q |
9 7 6 5 4 3 2 q |
||
Line 213: | Line 159: | ||
13 14 16 17 19 20 |
13 14 16 17 19 20 |
||
10 q + 8 q - 5 q + 4 q - 2 q + q</nowiki></pre></td></tr> |
10 q + 8 q - 5 q + 4 q - 2 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:33, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,8,17,7 X12,3,13,4 X2,15,3,16 X14,5,15,6 X4,13,5,14 X18,10,19,9 X20,12,1,11 X8,18,9,17 X10,20,11,19 |
Gauss code | 1, -4, 3, -6, 5, -1, 2, -9, 7, -10, 8, -3, 6, -5, 4, -2, 9, -7, 10, -8 |
Dowker-Thistlethwaite code | 6 12 14 16 18 20 4 2 8 10 |
Conway Notation | [5113] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{2, 12}, {1, 7}, {11, 6}, {12, 8}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 9}, {8, 10}, {9, 11}, {10, 1}] |
[edit Notes on presentations of 10 9]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 9"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,8,17,7 X12,3,13,4 X2,15,3,16 X14,5,15,6 X4,13,5,14 X18,10,19,9 X20,12,1,11 X8,18,9,17 X10,20,11,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -6, 5, -1, 2, -9, 7, -10, 8, -3, 6, -5, 4, -2, 9, -7, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 12 14 16 18 20 4 2 8 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[5113] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 12}, {1, 7}, {11, 6}, {12, 8}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 9}, {8, 10}, {9, 11}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 9"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 9"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|