8 10: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 8 | |
|||
<!-- --> |
|||
k = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,5,-8,2,-3,7,-6,4,-5,3,-7,6/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=8|k=10|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,5,-8,2,-3,7,-6,4,-5,3,-7,6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 8 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 8, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[10_143]], [[K11n106]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_143]], [[K11n106]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 70: | Line 34: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-2 q^{16}+q^{15}+4 q^{14}-9 q^{13}+3 q^{12}+12 q^{11}-19 q^{10}+3 q^9+20 q^8-24 q^7+2 q^6+23 q^5-21 q^4-2 q^3+21 q^2-14 q-5+14 q^{-1} -6 q^{-2} -5 q^{-3} +6 q^{-4} - q^{-5} -2 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{33}+2 q^{32}-q^{31}-q^{30}+5 q^{28}-3 q^{27}-8 q^{26}+5 q^{25}+17 q^{24}-10 q^{23}-25 q^{22}+8 q^{21}+40 q^{20}-10 q^{19}-51 q^{18}+8 q^{17}+59 q^{16}-2 q^{15}-69 q^{14}+q^{13}+66 q^{12}+10 q^{11}-71 q^{10}-8 q^9+59 q^8+21 q^7-58 q^6-20 q^5+44 q^4+31 q^3-39 q^2-28 q+25+31 q^{-1} -16 q^{-2} -28 q^{-3} +7 q^{-4} +22 q^{-5} -16 q^{-7} -3 q^{-8} +9 q^{-9} +4 q^{-10} -5 q^{-11} -2 q^{-12} + q^{-13} +2 q^{-14} - q^{-15} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{17}-2 q^{16}+q^{15}+4 q^{14}-9 q^{13}+3 q^{12}+12 q^{11}-19 q^{10}+3 q^9+20 q^8-24 q^7+2 q^6+23 q^5-21 q^4-2 q^3+21 q^2-14 q-5+14 q^{-1} -6 q^{-2} -5 q^{-3} +6 q^{-4} - q^{-5} -2 q^{-6} + q^{-7} </math>|J3=<math>-q^{33}+2 q^{32}-q^{31}-q^{30}+5 q^{28}-3 q^{27}-8 q^{26}+5 q^{25}+17 q^{24}-10 q^{23}-25 q^{22}+8 q^{21}+40 q^{20}-10 q^{19}-51 q^{18}+8 q^{17}+59 q^{16}-2 q^{15}-69 q^{14}+q^{13}+66 q^{12}+10 q^{11}-71 q^{10}-8 q^9+59 q^8+21 q^7-58 q^6-20 q^5+44 q^4+31 q^3-39 q^2-28 q+25+31 q^{-1} -16 q^{-2} -28 q^{-3} +7 q^{-4} +22 q^{-5} -16 q^{-7} -3 q^{-8} +9 q^{-9} +4 q^{-10} -5 q^{-11} -2 q^{-12} + q^{-13} +2 q^{-14} - q^{-15} </math>|J4=<math>q^{54}-2 q^{53}+q^{52}+q^{51}-3 q^{50}+4 q^{49}-5 q^{48}+5 q^{47}+3 q^{46}-13 q^{45}+7 q^{44}-9 q^{43}+22 q^{42}+15 q^{41}-39 q^{40}-8 q^{39}-22 q^{38}+64 q^{37}+55 q^{36}-68 q^{35}-48 q^{34}-67 q^{33}+111 q^{32}+127 q^{31}-75 q^{30}-93 q^{29}-136 q^{28}+136 q^{27}+195 q^{26}-56 q^{25}-111 q^{24}-195 q^{23}+127 q^{22}+228 q^{21}-28 q^{20}-100 q^{19}-222 q^{18}+100 q^{17}+220 q^{16}-2 q^{15}-67 q^{14}-224 q^{13}+64 q^{12}+187 q^{11}+24 q^{10}-23 q^9-206 q^8+17 q^7+136 q^6+50 q^5+28 q^4-171 q^3-30 q^2+74 q+59+69 q^{-1} -112 q^{-2} -53 q^{-3} +11 q^{-4} +39 q^{-5} +82 q^{-6} -47 q^{-7} -40 q^{-8} -23 q^{-9} +6 q^{-10} +59 q^{-11} -6 q^{-12} -12 q^{-13} -21 q^{-14} -11 q^{-15} +25 q^{-16} +3 q^{-17} +2 q^{-18} -7 q^{-19} -8 q^{-20} +6 q^{-21} + q^{-22} +2 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} </math>|J5=<math>-q^{80}+2 q^{79}-q^{78}-q^{77}+3 q^{76}-q^{75}-4 q^{74}+3 q^{73}-q^{71}+8 q^{70}-14 q^{68}-5 q^{67}-q^{66}+11 q^{65}+29 q^{64}+12 q^{63}-29 q^{62}-53 q^{61}-34 q^{60}+28 q^{59}+103 q^{58}+84 q^{57}-30 q^{56}-150 q^{55}-163 q^{54}-4 q^{53}+217 q^{52}+261 q^{51}+52 q^{50}-250 q^{49}-376 q^{48}-150 q^{47}+287 q^{46}+487 q^{45}+243 q^{44}-273 q^{43}-583 q^{42}-354 q^{41}+244 q^{40}+652 q^{39}+453 q^{38}-208 q^{37}-683 q^{36}-518 q^{35}+140 q^{34}+694 q^{33}+584 q^{32}-112 q^{31}-676 q^{30}-584 q^{29}+39 q^{28}+647 q^{27}+617 q^{26}-31 q^{25}-604 q^{24}-576 q^{23}-39 q^{22}+552 q^{21}+590 q^{20}+45 q^{19}-490 q^{18}-534 q^{17}-123 q^{16}+419 q^{15}+536 q^{14}+137 q^{13}-331 q^{12}-468 q^{11}-215 q^{10}+236 q^9+443 q^8+235 q^7-137 q^6-348 q^5-283 q^4+30 q^3+288 q^2+274 q+55-179 q^{-1} -259 q^{-2} -126 q^{-3} +92 q^{-4} +209 q^{-5} +156 q^{-6} -6 q^{-7} -144 q^{-8} -158 q^{-9} -55 q^{-10} +78 q^{-11} +132 q^{-12} +81 q^{-13} -17 q^{-14} -92 q^{-15} -84 q^{-16} -18 q^{-17} +48 q^{-18} +66 q^{-19} +37 q^{-20} -18 q^{-21} -44 q^{-22} -30 q^{-23} -4 q^{-24} +20 q^{-25} +27 q^{-26} +8 q^{-27} -11 q^{-28} -11 q^{-29} -7 q^{-30} -2 q^{-31} +9 q^{-32} +6 q^{-33} -2 q^{-34} -2 q^{-35} - q^{-36} -2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} </math>|J6=<math>q^{111}-2 q^{110}+q^{109}+q^{108}-3 q^{107}+q^{106}+q^{105}+6 q^{104}-8 q^{103}-2 q^{102}+6 q^{101}-9 q^{100}+4 q^{99}+9 q^{98}+17 q^{97}-20 q^{96}-17 q^{95}+4 q^{94}-25 q^{93}+14 q^{92}+44 q^{91}+63 q^{90}-30 q^{89}-60 q^{88}-44 q^{87}-106 q^{86}+13 q^{85}+138 q^{84}+228 q^{83}+54 q^{82}-106 q^{81}-200 q^{80}-385 q^{79}-128 q^{78}+254 q^{77}+596 q^{76}+403 q^{75}+23 q^{74}-401 q^{73}-946 q^{72}-607 q^{71}+171 q^{70}+1060 q^{69}+1066 q^{68}+522 q^{67}-390 q^{66}-1601 q^{65}-1407 q^{64}-293 q^{63}+1306 q^{62}+1782 q^{61}+1311 q^{60}-12 q^{59}-1998 q^{58}-2199 q^{57}-998 q^{56}+1186 q^{55}+2193 q^{54}+2031 q^{53}+560 q^{52}-2005 q^{51}-2646 q^{50}-1607 q^{49}+862 q^{48}+2225 q^{47}+2411 q^{46}+1026 q^{45}-1785 q^{44}-2715 q^{43}-1919 q^{42}+568 q^{41}+2039 q^{40}+2470 q^{39}+1259 q^{38}-1529 q^{37}-2570 q^{36}-1982 q^{35}+369 q^{34}+1780 q^{33}+2364 q^{32}+1346 q^{31}-1263 q^{30}-2334 q^{29}-1942 q^{28}+172 q^{27}+1454 q^{26}+2191 q^{25}+1420 q^{24}-901 q^{23}-2001 q^{22}-1882 q^{21}-122 q^{20}+997 q^{19}+1934 q^{18}+1520 q^{17}-391 q^{16}-1511 q^{15}-1750 q^{14}-488 q^{13}+391 q^{12}+1502 q^{11}+1535 q^{10}+193 q^9-844 q^8-1418 q^7-755 q^6-260 q^5+865 q^4+1296 q^3+624 q^2-127 q-840-720 q^{-1} -704 q^{-2} +171 q^{-3} +767 q^{-4} +680 q^{-5} +361 q^{-6} -193 q^{-7} -361 q^{-8} -731 q^{-9} -278 q^{-10} +173 q^{-11} +381 q^{-12} +424 q^{-13} +205 q^{-14} +64 q^{-15} -419 q^{-16} -323 q^{-17} -161 q^{-18} +28 q^{-19} +190 q^{-20} +229 q^{-21} +249 q^{-22} -91 q^{-23} -132 q^{-24} -165 q^{-25} -109 q^{-26} -24 q^{-27} +78 q^{-28} +183 q^{-29} +32 q^{-30} +13 q^{-31} -52 q^{-32} -65 q^{-33} -68 q^{-34} -16 q^{-35} +68 q^{-36} +20 q^{-37} +32 q^{-38} +4 q^{-39} -9 q^{-40} -33 q^{-41} -21 q^{-42} +15 q^{-43} +12 q^{-45} +6 q^{-46} +5 q^{-47} -9 q^{-48} -8 q^{-49} +4 q^{-50} -2 q^{-51} +2 q^{-52} + q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-57} </math>|J7=<math>-q^{147}+2 q^{146}-q^{145}-q^{144}+3 q^{143}-q^{142}-q^{141}-3 q^{140}-q^{139}+10 q^{138}-3 q^{137}-5 q^{136}+5 q^{135}-5 q^{134}-2 q^{133}-8 q^{132}+33 q^{130}+3 q^{129}-13 q^{128}-4 q^{127}-29 q^{126}-13 q^{125}-21 q^{124}+13 q^{123}+96 q^{122}+52 q^{121}+8 q^{120}-34 q^{119}-131 q^{118}-116 q^{117}-95 q^{116}+25 q^{115}+261 q^{114}+276 q^{113}+212 q^{112}+2 q^{111}-378 q^{110}-509 q^{109}-510 q^{108}-162 q^{107}+512 q^{106}+890 q^{105}+980 q^{104}+500 q^{103}-550 q^{102}-1333 q^{101}-1700 q^{100}-1131 q^{99}+415 q^{98}+1774 q^{97}+2613 q^{96}+2089 q^{95}+51 q^{94}-2106 q^{93}-3671 q^{92}-3343 q^{91}-825 q^{90}+2168 q^{89}+4631 q^{88}+4818 q^{87}+2013 q^{86}-1899 q^{85}-5485 q^{84}-6312 q^{83}-3356 q^{82}+1267 q^{81}+5938 q^{80}+7656 q^{79}+4877 q^{78}-363 q^{77}-6095 q^{76}-8724 q^{75}-6237 q^{74}-678 q^{73}+5881 q^{72}+9406 q^{71}+7380 q^{70}+1744 q^{69}-5432 q^{68}-9753 q^{67}-8236 q^{66}-2654 q^{65}+4922 q^{64}+9773 q^{63}+8701 q^{62}+3378 q^{61}-4308 q^{60}-9623 q^{59}-8990 q^{58}-3863 q^{57}+3885 q^{56}+9349 q^{55}+8943 q^{54}+4156 q^{53}-3406 q^{52}-9030 q^{51}-8916 q^{50}-4321 q^{49}+3157 q^{48}+8713 q^{47}+8661 q^{46}+4390 q^{45}-2770 q^{44}-8353 q^{43}-8548 q^{42}-4474 q^{41}+2528 q^{40}+7984 q^{39}+8242 q^{38}+4565 q^{37}-2034 q^{36}-7511 q^{35}-8097 q^{34}-4735 q^{33}+1607 q^{32}+6945 q^{31}+7724 q^{30}+4942 q^{29}-870 q^{28}-6211 q^{27}-7459 q^{26}-5180 q^{25}+177 q^{24}+5333 q^{23}+6882 q^{22}+5385 q^{21}+766 q^{20}-4265 q^{19}-6306 q^{18}-5507 q^{17}-1574 q^{16}+3085 q^{15}+5380 q^{14}+5419 q^{13}+2444 q^{12}-1778 q^{11}-4386 q^{10}-5126 q^9-3029 q^8+566 q^7+3117 q^6+4495 q^5+3415 q^4+586 q^3-1862 q^2-3669 q-3388-1398 q^{-1} +620 q^{-2} +2585 q^{-3} +3042 q^{-4} +1904 q^{-5} +400 q^{-6} -1494 q^{-7} -2398 q^{-8} -1972 q^{-9} -1098 q^{-10} +483 q^{-11} +1570 q^{-12} +1706 q^{-13} +1431 q^{-14} +283 q^{-15} -763 q^{-16} -1208 q^{-17} -1380 q^{-18} -724 q^{-19} +88 q^{-20} +618 q^{-21} +1094 q^{-22} +845 q^{-23} +334 q^{-24} -108 q^{-25} -678 q^{-26} -725 q^{-27} -504 q^{-28} -223 q^{-29} +290 q^{-30} +467 q^{-31} +459 q^{-32} +383 q^{-33} -4 q^{-34} -227 q^{-35} -323 q^{-36} -357 q^{-37} -118 q^{-38} +22 q^{-39} +144 q^{-40} +274 q^{-41} +166 q^{-42} +61 q^{-43} -44 q^{-44} -157 q^{-45} -106 q^{-46} -85 q^{-47} -43 q^{-48} +71 q^{-49} +76 q^{-50} +74 q^{-51} +38 q^{-52} -30 q^{-53} -20 q^{-54} -34 q^{-55} -45 q^{-56} -4 q^{-57} +10 q^{-58} +26 q^{-59} +24 q^{-60} -5 q^{-61} +3 q^{-62} -2 q^{-63} -14 q^{-64} -6 q^{-65} -4 q^{-66} +6 q^{-67} +8 q^{-68} -2 q^{-69} +2 q^{-71} -2 q^{-72} - q^{-73} -2 q^{-74} + q^{-75} +2 q^{-76} - q^{-77} </math>}} |
|||
coloured_jones_4 = <math>q^{54}-2 q^{53}+q^{52}+q^{51}-3 q^{50}+4 q^{49}-5 q^{48}+5 q^{47}+3 q^{46}-13 q^{45}+7 q^{44}-9 q^{43}+22 q^{42}+15 q^{41}-39 q^{40}-8 q^{39}-22 q^{38}+64 q^{37}+55 q^{36}-68 q^{35}-48 q^{34}-67 q^{33}+111 q^{32}+127 q^{31}-75 q^{30}-93 q^{29}-136 q^{28}+136 q^{27}+195 q^{26}-56 q^{25}-111 q^{24}-195 q^{23}+127 q^{22}+228 q^{21}-28 q^{20}-100 q^{19}-222 q^{18}+100 q^{17}+220 q^{16}-2 q^{15}-67 q^{14}-224 q^{13}+64 q^{12}+187 q^{11}+24 q^{10}-23 q^9-206 q^8+17 q^7+136 q^6+50 q^5+28 q^4-171 q^3-30 q^2+74 q+59+69 q^{-1} -112 q^{-2} -53 q^{-3} +11 q^{-4} +39 q^{-5} +82 q^{-6} -47 q^{-7} -40 q^{-8} -23 q^{-9} +6 q^{-10} +59 q^{-11} -6 q^{-12} -12 q^{-13} -21 q^{-14} -11 q^{-15} +25 q^{-16} +3 q^{-17} +2 q^{-18} -7 q^{-19} -8 q^{-20} +6 q^{-21} + q^{-22} +2 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}-q^{77}+3 q^{76}-q^{75}-4 q^{74}+3 q^{73}-q^{71}+8 q^{70}-14 q^{68}-5 q^{67}-q^{66}+11 q^{65}+29 q^{64}+12 q^{63}-29 q^{62}-53 q^{61}-34 q^{60}+28 q^{59}+103 q^{58}+84 q^{57}-30 q^{56}-150 q^{55}-163 q^{54}-4 q^{53}+217 q^{52}+261 q^{51}+52 q^{50}-250 q^{49}-376 q^{48}-150 q^{47}+287 q^{46}+487 q^{45}+243 q^{44}-273 q^{43}-583 q^{42}-354 q^{41}+244 q^{40}+652 q^{39}+453 q^{38}-208 q^{37}-683 q^{36}-518 q^{35}+140 q^{34}+694 q^{33}+584 q^{32}-112 q^{31}-676 q^{30}-584 q^{29}+39 q^{28}+647 q^{27}+617 q^{26}-31 q^{25}-604 q^{24}-576 q^{23}-39 q^{22}+552 q^{21}+590 q^{20}+45 q^{19}-490 q^{18}-534 q^{17}-123 q^{16}+419 q^{15}+536 q^{14}+137 q^{13}-331 q^{12}-468 q^{11}-215 q^{10}+236 q^9+443 q^8+235 q^7-137 q^6-348 q^5-283 q^4+30 q^3+288 q^2+274 q+55-179 q^{-1} -259 q^{-2} -126 q^{-3} +92 q^{-4} +209 q^{-5} +156 q^{-6} -6 q^{-7} -144 q^{-8} -158 q^{-9} -55 q^{-10} +78 q^{-11} +132 q^{-12} +81 q^{-13} -17 q^{-14} -92 q^{-15} -84 q^{-16} -18 q^{-17} +48 q^{-18} +66 q^{-19} +37 q^{-20} -18 q^{-21} -44 q^{-22} -30 q^{-23} -4 q^{-24} +20 q^{-25} +27 q^{-26} +8 q^{-27} -11 q^{-28} -11 q^{-29} -7 q^{-30} -2 q^{-31} +9 q^{-32} +6 q^{-33} -2 q^{-34} -2 q^{-35} - q^{-36} -2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}+q^{108}-3 q^{107}+q^{106}+q^{105}+6 q^{104}-8 q^{103}-2 q^{102}+6 q^{101}-9 q^{100}+4 q^{99}+9 q^{98}+17 q^{97}-20 q^{96}-17 q^{95}+4 q^{94}-25 q^{93}+14 q^{92}+44 q^{91}+63 q^{90}-30 q^{89}-60 q^{88}-44 q^{87}-106 q^{86}+13 q^{85}+138 q^{84}+228 q^{83}+54 q^{82}-106 q^{81}-200 q^{80}-385 q^{79}-128 q^{78}+254 q^{77}+596 q^{76}+403 q^{75}+23 q^{74}-401 q^{73}-946 q^{72}-607 q^{71}+171 q^{70}+1060 q^{69}+1066 q^{68}+522 q^{67}-390 q^{66}-1601 q^{65}-1407 q^{64}-293 q^{63}+1306 q^{62}+1782 q^{61}+1311 q^{60}-12 q^{59}-1998 q^{58}-2199 q^{57}-998 q^{56}+1186 q^{55}+2193 q^{54}+2031 q^{53}+560 q^{52}-2005 q^{51}-2646 q^{50}-1607 q^{49}+862 q^{48}+2225 q^{47}+2411 q^{46}+1026 q^{45}-1785 q^{44}-2715 q^{43}-1919 q^{42}+568 q^{41}+2039 q^{40}+2470 q^{39}+1259 q^{38}-1529 q^{37}-2570 q^{36}-1982 q^{35}+369 q^{34}+1780 q^{33}+2364 q^{32}+1346 q^{31}-1263 q^{30}-2334 q^{29}-1942 q^{28}+172 q^{27}+1454 q^{26}+2191 q^{25}+1420 q^{24}-901 q^{23}-2001 q^{22}-1882 q^{21}-122 q^{20}+997 q^{19}+1934 q^{18}+1520 q^{17}-391 q^{16}-1511 q^{15}-1750 q^{14}-488 q^{13}+391 q^{12}+1502 q^{11}+1535 q^{10}+193 q^9-844 q^8-1418 q^7-755 q^6-260 q^5+865 q^4+1296 q^3+624 q^2-127 q-840-720 q^{-1} -704 q^{-2} +171 q^{-3} +767 q^{-4} +680 q^{-5} +361 q^{-6} -193 q^{-7} -361 q^{-8} -731 q^{-9} -278 q^{-10} +173 q^{-11} +381 q^{-12} +424 q^{-13} +205 q^{-14} +64 q^{-15} -419 q^{-16} -323 q^{-17} -161 q^{-18} +28 q^{-19} +190 q^{-20} +229 q^{-21} +249 q^{-22} -91 q^{-23} -132 q^{-24} -165 q^{-25} -109 q^{-26} -24 q^{-27} +78 q^{-28} +183 q^{-29} +32 q^{-30} +13 q^{-31} -52 q^{-32} -65 q^{-33} -68 q^{-34} -16 q^{-35} +68 q^{-36} +20 q^{-37} +32 q^{-38} +4 q^{-39} -9 q^{-40} -33 q^{-41} -21 q^{-42} +15 q^{-43} +12 q^{-45} +6 q^{-46} +5 q^{-47} -9 q^{-48} -8 q^{-49} +4 q^{-50} -2 q^{-51} +2 q^{-52} + q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_7 = <math>-q^{147}+2 q^{146}-q^{145}-q^{144}+3 q^{143}-q^{142}-q^{141}-3 q^{140}-q^{139}+10 q^{138}-3 q^{137}-5 q^{136}+5 q^{135}-5 q^{134}-2 q^{133}-8 q^{132}+33 q^{130}+3 q^{129}-13 q^{128}-4 q^{127}-29 q^{126}-13 q^{125}-21 q^{124}+13 q^{123}+96 q^{122}+52 q^{121}+8 q^{120}-34 q^{119}-131 q^{118}-116 q^{117}-95 q^{116}+25 q^{115}+261 q^{114}+276 q^{113}+212 q^{112}+2 q^{111}-378 q^{110}-509 q^{109}-510 q^{108}-162 q^{107}+512 q^{106}+890 q^{105}+980 q^{104}+500 q^{103}-550 q^{102}-1333 q^{101}-1700 q^{100}-1131 q^{99}+415 q^{98}+1774 q^{97}+2613 q^{96}+2089 q^{95}+51 q^{94}-2106 q^{93}-3671 q^{92}-3343 q^{91}-825 q^{90}+2168 q^{89}+4631 q^{88}+4818 q^{87}+2013 q^{86}-1899 q^{85}-5485 q^{84}-6312 q^{83}-3356 q^{82}+1267 q^{81}+5938 q^{80}+7656 q^{79}+4877 q^{78}-363 q^{77}-6095 q^{76}-8724 q^{75}-6237 q^{74}-678 q^{73}+5881 q^{72}+9406 q^{71}+7380 q^{70}+1744 q^{69}-5432 q^{68}-9753 q^{67}-8236 q^{66}-2654 q^{65}+4922 q^{64}+9773 q^{63}+8701 q^{62}+3378 q^{61}-4308 q^{60}-9623 q^{59}-8990 q^{58}-3863 q^{57}+3885 q^{56}+9349 q^{55}+8943 q^{54}+4156 q^{53}-3406 q^{52}-9030 q^{51}-8916 q^{50}-4321 q^{49}+3157 q^{48}+8713 q^{47}+8661 q^{46}+4390 q^{45}-2770 q^{44}-8353 q^{43}-8548 q^{42}-4474 q^{41}+2528 q^{40}+7984 q^{39}+8242 q^{38}+4565 q^{37}-2034 q^{36}-7511 q^{35}-8097 q^{34}-4735 q^{33}+1607 q^{32}+6945 q^{31}+7724 q^{30}+4942 q^{29}-870 q^{28}-6211 q^{27}-7459 q^{26}-5180 q^{25}+177 q^{24}+5333 q^{23}+6882 q^{22}+5385 q^{21}+766 q^{20}-4265 q^{19}-6306 q^{18}-5507 q^{17}-1574 q^{16}+3085 q^{15}+5380 q^{14}+5419 q^{13}+2444 q^{12}-1778 q^{11}-4386 q^{10}-5126 q^9-3029 q^8+566 q^7+3117 q^6+4495 q^5+3415 q^4+586 q^3-1862 q^2-3669 q-3388-1398 q^{-1} +620 q^{-2} +2585 q^{-3} +3042 q^{-4} +1904 q^{-5} +400 q^{-6} -1494 q^{-7} -2398 q^{-8} -1972 q^{-9} -1098 q^{-10} +483 q^{-11} +1570 q^{-12} +1706 q^{-13} +1431 q^{-14} +283 q^{-15} -763 q^{-16} -1208 q^{-17} -1380 q^{-18} -724 q^{-19} +88 q^{-20} +618 q^{-21} +1094 q^{-22} +845 q^{-23} +334 q^{-24} -108 q^{-25} -678 q^{-26} -725 q^{-27} -504 q^{-28} -223 q^{-29} +290 q^{-30} +467 q^{-31} +459 q^{-32} +383 q^{-33} -4 q^{-34} -227 q^{-35} -323 q^{-36} -357 q^{-37} -118 q^{-38} +22 q^{-39} +144 q^{-40} +274 q^{-41} +166 q^{-42} +61 q^{-43} -44 q^{-44} -157 q^{-45} -106 q^{-46} -85 q^{-47} -43 q^{-48} +71 q^{-49} +76 q^{-50} +74 q^{-51} +38 q^{-52} -30 q^{-53} -20 q^{-54} -34 q^{-55} -45 q^{-56} -4 q^{-57} +10 q^{-58} +26 q^{-59} +24 q^{-60} -5 q^{-61} +3 q^{-62} -2 q^{-63} -14 q^{-64} -6 q^{-65} -4 q^{-66} +6 q^{-67} +8 q^{-68} -2 q^{-69} +2 q^{-71} -2 q^{-72} - q^{-73} -2 q^{-74} + q^{-75} +2 q^{-76} - q^{-77} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 10]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[5, 13, 6, 12], |
|||
X[13, 7, 14, 6], X[11, 1, 12, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[13, 7, 14, 6], X[11, 1, 12, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 1, -4, 5, -8, 2, -3, 7, -6, 4, -5, 3, -7, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 10]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, 14, 16, 6, 10]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 10]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 10]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 10]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_10_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 10]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 10]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 6 2 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 10]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_10_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 10]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 10]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 6 2 3 |
|||
-7 + t - -- + - + 6 t - 3 t + t |
-7 + t - -- + - + 6 t - 3 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 10]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 3 z + 3 z + z</nowiki></pre></td></tr> |
1 + 3 z + 3 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 10], Knot[10, 143], Knot[11, NonAlternating, 106]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 10]], KnotSignature[Knot[8, 10]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 10]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 10]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 |
|||
-3 - q + - + 5 q - 4 q + 5 q - 4 q + 2 q - q |
-3 - q + - + 5 q - 4 q + 5 q - 4 q + 2 q - q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 10]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 10]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -2 2 4 6 8 10 12 14 18 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 10]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -2 2 4 6 8 10 12 14 18 |
|||
-q - q + 2 q + q + 4 q + q + q - q - 2 q - q</nowiki></pre></td></tr> |
-q - q + 2 q + q + 4 q + q + q - q - 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 10]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6 |
|||
3 6 2 3 z 9 z 4 z 5 z z |
3 6 2 3 z 9 z 4 z 5 z z |
||
-2 - -- + -- - 3 z - ---- + ---- - z - -- + ---- + -- |
-2 - -- + -- - 3 z - ---- + ---- - z - -- + ---- + -- |
||
4 2 4 2 4 2 2 |
4 2 4 2 4 2 2 |
||
a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 10]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
3 6 z 2 z 6 z 5 z 2 z 6 z |
3 6 z 2 z 6 z 5 z 2 z 6 z |
||
-2 - -- - -- - -- + --- + --- + --- + 2 a z + 5 z - -- + ---- + |
-2 - -- - -- - -- + --- + --- + --- + 2 a z + 5 z - -- + ---- + |
||
Line 161: | Line 110: | ||
2 5 3 a 4 2 3 a |
2 5 3 a 4 2 3 a |
||
a a a a a a</nowiki></pre></td></tr> |
a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 10]], Vassiliev[3][Knot[8, 10]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 10]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 2 q 3 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 10]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 2 q 3 5 |
|||
3 q + 3 q + ----- + ----- + ---- + --- + - + 2 q t + 2 q t + |
3 q + 3 q + ----- + ----- + ---- + --- + - + 2 q t + 2 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 173: | Line 120: | ||
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
||
3 q t + 2 q t + q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
3 q t + 2 q t + q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 10], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 -5 6 5 6 14 2 3 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 -5 6 5 6 14 2 3 4 |
|||
-5 + q - -- - q + -- - -- - -- + -- - 14 q + 21 q - 2 q - 21 q + |
-5 + q - -- - q + -- - -- - -- + -- - 14 q + 21 q - 2 q - 21 q + |
||
6 4 3 2 q |
6 4 3 2 q |
||
Line 185: | Line 131: | ||
13 14 15 16 17 |
13 14 15 16 17 |
||
9 q + 4 q + q - 2 q + q</nowiki></pre></td></tr> |
9 q + 4 q + q - 2 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:34, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X7283 |
Gauss code | -1, 8, -2, 1, -4, 5, -8, 2, -3, 7, -6, 4, -5, 3, -7, 6 |
Dowker-Thistlethwaite code | 4 8 12 2 14 16 6 10 |
Conway Notation | [3,21,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {1, 3}, {11, 2}, {10, 1}] |
[edit Notes on presentations of 8 10]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 10"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 1, -4, 5, -8, 2, -3, 7, -6, 4, -5, 3, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 14 16 6 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,21,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {1, 3}, {11, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 10"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_143, K11n106,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 10"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_143, K11n106,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, 3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 8 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|