8 17: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- -->
k = 17 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-3,6,-8,7,-5,4,-2,8,-7/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=8|k=17|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-3,6,-8,7,-5,4,-2,8,-7/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 8 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 8, width is 3.
braid_index = 3 |

same_alexander = [[K11n53]], |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n53]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
Line 70: Line 34:
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{12}-3 q^{11}+q^{10}+9 q^9-14 q^8-3 q^7+28 q^6-25 q^5-14 q^4+47 q^3-29 q^2-25 q+55-25 q^{-1} -29 q^{-2} +47 q^{-3} -14 q^{-4} -25 q^{-5} +28 q^{-6} -3 q^{-7} -14 q^{-8} +9 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math> |

coloured_jones_3 = <math>q^{24}-3 q^{23}+q^{22}+5 q^{21}+q^{20}-14 q^{19}-6 q^{18}+29 q^{17}+17 q^{16}-43 q^{15}-40 q^{14}+55 q^{13}+73 q^{12}-64 q^{11}-108 q^{10}+61 q^9+146 q^8-53 q^7-177 q^6+38 q^5+205 q^4-26 q^3-216 q^2+6 q+225+6 q^{-1} -216 q^{-2} -26 q^{-3} +205 q^{-4} +38 q^{-5} -177 q^{-6} -53 q^{-7} +146 q^{-8} +61 q^{-9} -108 q^{-10} -64 q^{-11} +73 q^{-12} +55 q^{-13} -40 q^{-14} -43 q^{-15} +17 q^{-16} +29 q^{-17} -6 q^{-18} -14 q^{-19} + q^{-20} +5 q^{-21} + q^{-22} -3 q^{-23} + q^{-24} </math> |
{{Display Coloured Jones|J2=<math>q^{12}-3 q^{11}+q^{10}+9 q^9-14 q^8-3 q^7+28 q^6-25 q^5-14 q^4+47 q^3-29 q^2-25 q+55-25 q^{-1} -29 q^{-2} +47 q^{-3} -14 q^{-4} -25 q^{-5} +28 q^{-6} -3 q^{-7} -14 q^{-8} +9 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>q^{24}-3 q^{23}+q^{22}+5 q^{21}+q^{20}-14 q^{19}-6 q^{18}+29 q^{17}+17 q^{16}-43 q^{15}-40 q^{14}+55 q^{13}+73 q^{12}-64 q^{11}-108 q^{10}+61 q^9+146 q^8-53 q^7-177 q^6+38 q^5+205 q^4-26 q^3-216 q^2+6 q+225+6 q^{-1} -216 q^{-2} -26 q^{-3} +205 q^{-4} +38 q^{-5} -177 q^{-6} -53 q^{-7} +146 q^{-8} +61 q^{-9} -108 q^{-10} -64 q^{-11} +73 q^{-12} +55 q^{-13} -40 q^{-14} -43 q^{-15} +17 q^{-16} +29 q^{-17} -6 q^{-18} -14 q^{-19} + q^{-20} +5 q^{-21} + q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{40}-3 q^{39}+q^{38}+5 q^{37}-3 q^{36}+q^{35}-17 q^{34}+6 q^{33}+31 q^{32}+q^{31}-82 q^{29}-16 q^{28}+96 q^{27}+69 q^{26}+52 q^{25}-216 q^{24}-146 q^{23}+120 q^{22}+216 q^{21}+260 q^{20}-323 q^{19}-393 q^{18}-7 q^{17}+340 q^{16}+605 q^{15}-292 q^{14}-631 q^{13}-265 q^{12}+347 q^{11}+945 q^{10}-149 q^9-759 q^8-522 q^7+261 q^6+1161 q^5+11 q^4-771 q^3-694 q^2+144 q+1233+144 q^{-1} -694 q^{-2} -771 q^{-3} +11 q^{-4} +1161 q^{-5} +261 q^{-6} -522 q^{-7} -759 q^{-8} -149 q^{-9} +945 q^{-10} +347 q^{-11} -265 q^{-12} -631 q^{-13} -292 q^{-14} +605 q^{-15} +340 q^{-16} -7 q^{-17} -393 q^{-18} -323 q^{-19} +260 q^{-20} +216 q^{-21} +120 q^{-22} -146 q^{-23} -216 q^{-24} +52 q^{-25} +69 q^{-26} +96 q^{-27} -16 q^{-28} -82 q^{-29} + q^{-31} +31 q^{-32} +6 q^{-33} -17 q^{-34} + q^{-35} -3 q^{-36} +5 q^{-37} + q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}-3 q^{55}-2 q^{54}-5 q^{53}+8 q^{52}+26 q^{51}+4 q^{50}-30 q^{49}-43 q^{48}-34 q^{47}+35 q^{46}+112 q^{45}+107 q^{44}-31 q^{43}-197 q^{42}-237 q^{41}-60 q^{40}+270 q^{39}+462 q^{38}+264 q^{37}-285 q^{36}-728 q^{35}-603 q^{34}+141 q^{33}+976 q^{32}+1094 q^{31}+186 q^{30}-1134 q^{29}-1650 q^{28}-699 q^{27}+1099 q^{26}+2200 q^{25}+1387 q^{24}-888 q^{23}-2662 q^{22}-2125 q^{21}+494 q^{20}+2955 q^{19}+2877 q^{18}+9 q^{17}-3114 q^{16}-3506 q^{15}-568 q^{14}+3121 q^{13}+4033 q^{12}+1086 q^{11}-3040 q^{10}-4387 q^9-1560 q^8+2881 q^7+4660 q^6+1920 q^5-2707 q^4-4762 q^3-2247 q^2+2479 q+4841+2479 q^{-1} -2247 q^{-2} -4762 q^{-3} -2707 q^{-4} +1920 q^{-5} +4660 q^{-6} +2881 q^{-7} -1560 q^{-8} -4387 q^{-9} -3040 q^{-10} +1086 q^{-11} +4033 q^{-12} +3121 q^{-13} -568 q^{-14} -3506 q^{-15} -3114 q^{-16} +9 q^{-17} +2877 q^{-18} +2955 q^{-19} +494 q^{-20} -2125 q^{-21} -2662 q^{-22} -888 q^{-23} +1387 q^{-24} +2200 q^{-25} +1099 q^{-26} -699 q^{-27} -1650 q^{-28} -1134 q^{-29} +186 q^{-30} +1094 q^{-31} +976 q^{-32} +141 q^{-33} -603 q^{-34} -728 q^{-35} -285 q^{-36} +264 q^{-37} +462 q^{-38} +270 q^{-39} -60 q^{-40} -237 q^{-41} -197 q^{-42} -31 q^{-43} +107 q^{-44} +112 q^{-45} +35 q^{-46} -34 q^{-47} -43 q^{-48} -30 q^{-49} +4 q^{-50} +26 q^{-51} +8 q^{-52} -5 q^{-53} -2 q^{-54} -3 q^{-55} -3 q^{-56} +5 q^{-57} + q^{-58} -3 q^{-59} + q^{-60} </math>|J6=<math>q^{84}-3 q^{83}+q^{82}+5 q^{81}-3 q^{80}-3 q^{79}-6 q^{78}+10 q^{77}-3 q^{76}+3 q^{75}+29 q^{74}-15 q^{73}-31 q^{72}-49 q^{71}+14 q^{70}+16 q^{69}+61 q^{68}+153 q^{67}+14 q^{66}-117 q^{65}-273 q^{64}-149 q^{63}-92 q^{62}+203 q^{61}+641 q^{60}+463 q^{59}+57 q^{58}-691 q^{57}-870 q^{56}-1005 q^{55}-189 q^{54}+1343 q^{53}+1882 q^{52}+1543 q^{51}-247 q^{50}-1725 q^{49}-3355 q^{48}-2544 q^{47}+658 q^{46}+3470 q^{45}+4894 q^{44}+2812 q^{43}-590 q^{42}-5842 q^{41}-7188 q^{40}-3328 q^{39}+2689 q^{38}+8288 q^{37}+8456 q^{36}+4312 q^{35}-5674 q^{34}-11801 q^{33}-10070 q^{32}-1954 q^{31}+8878 q^{30}+14013 q^{29}+11845 q^{28}-1776 q^{27}-13643 q^{26}-16608 q^{25}-8872 q^{24}+6032 q^{23}+16953 q^{22}+18906 q^{21}+4000 q^{20}-12400 q^{19}-20628 q^{18}-15121 q^{17}+1645 q^{16}+17146 q^{15}+23466 q^{14}+9075 q^{13}-9763 q^{12}-22071 q^{11}-19122 q^{10}-2210 q^9+15962 q^8+25565 q^7+12389 q^6-7226 q^5-22014 q^4-21134 q^3-4957 q^2+14414 q+26111+14414 q^{-1} -4957 q^{-2} -21134 q^{-3} -22014 q^{-4} -7226 q^{-5} +12389 q^{-6} +25565 q^{-7} +15962 q^{-8} -2210 q^{-9} -19122 q^{-10} -22071 q^{-11} -9763 q^{-12} +9075 q^{-13} +23466 q^{-14} +17146 q^{-15} +1645 q^{-16} -15121 q^{-17} -20628 q^{-18} -12400 q^{-19} +4000 q^{-20} +18906 q^{-21} +16953 q^{-22} +6032 q^{-23} -8872 q^{-24} -16608 q^{-25} -13643 q^{-26} -1776 q^{-27} +11845 q^{-28} +14013 q^{-29} +8878 q^{-30} -1954 q^{-31} -10070 q^{-32} -11801 q^{-33} -5674 q^{-34} +4312 q^{-35} +8456 q^{-36} +8288 q^{-37} +2689 q^{-38} -3328 q^{-39} -7188 q^{-40} -5842 q^{-41} -590 q^{-42} +2812 q^{-43} +4894 q^{-44} +3470 q^{-45} +658 q^{-46} -2544 q^{-47} -3355 q^{-48} -1725 q^{-49} -247 q^{-50} +1543 q^{-51} +1882 q^{-52} +1343 q^{-53} -189 q^{-54} -1005 q^{-55} -870 q^{-56} -691 q^{-57} +57 q^{-58} +463 q^{-59} +641 q^{-60} +203 q^{-61} -92 q^{-62} -149 q^{-63} -273 q^{-64} -117 q^{-65} +14 q^{-66} +153 q^{-67} +61 q^{-68} +16 q^{-69} +14 q^{-70} -49 q^{-71} -31 q^{-72} -15 q^{-73} +29 q^{-74} +3 q^{-75} -3 q^{-76} +10 q^{-77} -6 q^{-78} -3 q^{-79} -3 q^{-80} +5 q^{-81} + q^{-82} -3 q^{-83} + q^{-84} </math>|J7=<math>q^{112}-3 q^{111}+q^{110}+5 q^{109}-3 q^{108}-3 q^{107}-6 q^{106}+6 q^{105}+12 q^{104}-8 q^{103}+6 q^{102}+10 q^{101}-16 q^{100}-26 q^{99}-41 q^{98}+7 q^{97}+74 q^{96}+44 q^{95}+71 q^{94}+43 q^{93}-78 q^{92}-159 q^{91}-283 q^{90}-154 q^{89}+143 q^{88}+317 q^{87}+550 q^{86}+516 q^{85}+93 q^{84}-417 q^{83}-1159 q^{82}-1332 q^{81}-683 q^{80}+256 q^{79}+1725 q^{78}+2573 q^{77}+2216 q^{76}+836 q^{75}-1934 q^{74}-4278 q^{73}-4774 q^{72}-3301 q^{71}+913 q^{70}+5542 q^{69}+8189 q^{68}+7815 q^{67}+2389 q^{66}-5364 q^{65}-11792 q^{64}-14143 q^{63}-8598 q^{62}+2327 q^{61}+13890 q^{60}+21402 q^{59}+18063 q^{58}+4775 q^{57}-12979 q^{56}-28137 q^{55}-29695 q^{54}-16138 q^{53}+7462 q^{52}+32099 q^{51}+41960 q^{50}+31319 q^{49}+3221 q^{48}-31814 q^{47}-52797 q^{46}-48414 q^{45}-18546 q^{44}+26269 q^{43}+60101 q^{42}+65456 q^{41}+37209 q^{40}-15734 q^{39}-62982 q^{38}-80416 q^{37}-56819 q^{36}+1416 q^{35}+61028 q^{34}+91744 q^{33}+75657 q^{32}+14955 q^{31}-55290 q^{30}-98994 q^{29}-91866 q^{28}-31357 q^{27}+46837 q^{26}+102372 q^{25}+104758 q^{24}+46339 q^{23}-37376 q^{22}-102713 q^{21}-113992 q^{20}-58991 q^{19}+28020 q^{18}+101063 q^{17}+120209 q^{16}+68876 q^{15}-19792 q^{14}-98300 q^{13}-123826 q^{12}-76313 q^{11}+12722 q^{10}+95254 q^9+125943 q^8+81699 q^7-7156 q^6-92151 q^5-126720 q^4-85773 q^3+2177 q^2+89089 q+127145+89089 q^{-1} +2177 q^{-2} -85773 q^{-3} -126720 q^{-4} -92151 q^{-5} -7156 q^{-6} +81699 q^{-7} +125943 q^{-8} +95254 q^{-9} +12722 q^{-10} -76313 q^{-11} -123826 q^{-12} -98300 q^{-13} -19792 q^{-14} +68876 q^{-15} +120209 q^{-16} +101063 q^{-17} +28020 q^{-18} -58991 q^{-19} -113992 q^{-20} -102713 q^{-21} -37376 q^{-22} +46339 q^{-23} +104758 q^{-24} +102372 q^{-25} +46837 q^{-26} -31357 q^{-27} -91866 q^{-28} -98994 q^{-29} -55290 q^{-30} +14955 q^{-31} +75657 q^{-32} +91744 q^{-33} +61028 q^{-34} +1416 q^{-35} -56819 q^{-36} -80416 q^{-37} -62982 q^{-38} -15734 q^{-39} +37209 q^{-40} +65456 q^{-41} +60101 q^{-42} +26269 q^{-43} -18546 q^{-44} -48414 q^{-45} -52797 q^{-46} -31814 q^{-47} +3221 q^{-48} +31319 q^{-49} +41960 q^{-50} +32099 q^{-51} +7462 q^{-52} -16138 q^{-53} -29695 q^{-54} -28137 q^{-55} -12979 q^{-56} +4775 q^{-57} +18063 q^{-58} +21402 q^{-59} +13890 q^{-60} +2327 q^{-61} -8598 q^{-62} -14143 q^{-63} -11792 q^{-64} -5364 q^{-65} +2389 q^{-66} +7815 q^{-67} +8189 q^{-68} +5542 q^{-69} +913 q^{-70} -3301 q^{-71} -4774 q^{-72} -4278 q^{-73} -1934 q^{-74} +836 q^{-75} +2216 q^{-76} +2573 q^{-77} +1725 q^{-78} +256 q^{-79} -683 q^{-80} -1332 q^{-81} -1159 q^{-82} -417 q^{-83} +93 q^{-84} +516 q^{-85} +550 q^{-86} +317 q^{-87} +143 q^{-88} -154 q^{-89} -283 q^{-90} -159 q^{-91} -78 q^{-92} +43 q^{-93} +71 q^{-94} +44 q^{-95} +74 q^{-96} +7 q^{-97} -41 q^{-98} -26 q^{-99} -16 q^{-100} +10 q^{-101} +6 q^{-102} -8 q^{-103} +12 q^{-104} +6 q^{-105} -6 q^{-106} -3 q^{-107} -3 q^{-108} +5 q^{-109} + q^{-110} -3 q^{-111} + q^{-112} </math>}}
coloured_jones_4 = <math>q^{40}-3 q^{39}+q^{38}+5 q^{37}-3 q^{36}+q^{35}-17 q^{34}+6 q^{33}+31 q^{32}+q^{31}-82 q^{29}-16 q^{28}+96 q^{27}+69 q^{26}+52 q^{25}-216 q^{24}-146 q^{23}+120 q^{22}+216 q^{21}+260 q^{20}-323 q^{19}-393 q^{18}-7 q^{17}+340 q^{16}+605 q^{15}-292 q^{14}-631 q^{13}-265 q^{12}+347 q^{11}+945 q^{10}-149 q^9-759 q^8-522 q^7+261 q^6+1161 q^5+11 q^4-771 q^3-694 q^2+144 q+1233+144 q^{-1} -694 q^{-2} -771 q^{-3} +11 q^{-4} +1161 q^{-5} +261 q^{-6} -522 q^{-7} -759 q^{-8} -149 q^{-9} +945 q^{-10} +347 q^{-11} -265 q^{-12} -631 q^{-13} -292 q^{-14} +605 q^{-15} +340 q^{-16} -7 q^{-17} -393 q^{-18} -323 q^{-19} +260 q^{-20} +216 q^{-21} +120 q^{-22} -146 q^{-23} -216 q^{-24} +52 q^{-25} +69 q^{-26} +96 q^{-27} -16 q^{-28} -82 q^{-29} + q^{-31} +31 q^{-32} +6 q^{-33} -17 q^{-34} + q^{-35} -3 q^{-36} +5 q^{-37} + q^{-38} -3 q^{-39} + q^{-40} </math> |

coloured_jones_5 = <math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}-3 q^{55}-2 q^{54}-5 q^{53}+8 q^{52}+26 q^{51}+4 q^{50}-30 q^{49}-43 q^{48}-34 q^{47}+35 q^{46}+112 q^{45}+107 q^{44}-31 q^{43}-197 q^{42}-237 q^{41}-60 q^{40}+270 q^{39}+462 q^{38}+264 q^{37}-285 q^{36}-728 q^{35}-603 q^{34}+141 q^{33}+976 q^{32}+1094 q^{31}+186 q^{30}-1134 q^{29}-1650 q^{28}-699 q^{27}+1099 q^{26}+2200 q^{25}+1387 q^{24}-888 q^{23}-2662 q^{22}-2125 q^{21}+494 q^{20}+2955 q^{19}+2877 q^{18}+9 q^{17}-3114 q^{16}-3506 q^{15}-568 q^{14}+3121 q^{13}+4033 q^{12}+1086 q^{11}-3040 q^{10}-4387 q^9-1560 q^8+2881 q^7+4660 q^6+1920 q^5-2707 q^4-4762 q^3-2247 q^2+2479 q+4841+2479 q^{-1} -2247 q^{-2} -4762 q^{-3} -2707 q^{-4} +1920 q^{-5} +4660 q^{-6} +2881 q^{-7} -1560 q^{-8} -4387 q^{-9} -3040 q^{-10} +1086 q^{-11} +4033 q^{-12} +3121 q^{-13} -568 q^{-14} -3506 q^{-15} -3114 q^{-16} +9 q^{-17} +2877 q^{-18} +2955 q^{-19} +494 q^{-20} -2125 q^{-21} -2662 q^{-22} -888 q^{-23} +1387 q^{-24} +2200 q^{-25} +1099 q^{-26} -699 q^{-27} -1650 q^{-28} -1134 q^{-29} +186 q^{-30} +1094 q^{-31} +976 q^{-32} +141 q^{-33} -603 q^{-34} -728 q^{-35} -285 q^{-36} +264 q^{-37} +462 q^{-38} +270 q^{-39} -60 q^{-40} -237 q^{-41} -197 q^{-42} -31 q^{-43} +107 q^{-44} +112 q^{-45} +35 q^{-46} -34 q^{-47} -43 q^{-48} -30 q^{-49} +4 q^{-50} +26 q^{-51} +8 q^{-52} -5 q^{-53} -2 q^{-54} -3 q^{-55} -3 q^{-56} +5 q^{-57} + q^{-58} -3 q^{-59} + q^{-60} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{84}-3 q^{83}+q^{82}+5 q^{81}-3 q^{80}-3 q^{79}-6 q^{78}+10 q^{77}-3 q^{76}+3 q^{75}+29 q^{74}-15 q^{73}-31 q^{72}-49 q^{71}+14 q^{70}+16 q^{69}+61 q^{68}+153 q^{67}+14 q^{66}-117 q^{65}-273 q^{64}-149 q^{63}-92 q^{62}+203 q^{61}+641 q^{60}+463 q^{59}+57 q^{58}-691 q^{57}-870 q^{56}-1005 q^{55}-189 q^{54}+1343 q^{53}+1882 q^{52}+1543 q^{51}-247 q^{50}-1725 q^{49}-3355 q^{48}-2544 q^{47}+658 q^{46}+3470 q^{45}+4894 q^{44}+2812 q^{43}-590 q^{42}-5842 q^{41}-7188 q^{40}-3328 q^{39}+2689 q^{38}+8288 q^{37}+8456 q^{36}+4312 q^{35}-5674 q^{34}-11801 q^{33}-10070 q^{32}-1954 q^{31}+8878 q^{30}+14013 q^{29}+11845 q^{28}-1776 q^{27}-13643 q^{26}-16608 q^{25}-8872 q^{24}+6032 q^{23}+16953 q^{22}+18906 q^{21}+4000 q^{20}-12400 q^{19}-20628 q^{18}-15121 q^{17}+1645 q^{16}+17146 q^{15}+23466 q^{14}+9075 q^{13}-9763 q^{12}-22071 q^{11}-19122 q^{10}-2210 q^9+15962 q^8+25565 q^7+12389 q^6-7226 q^5-22014 q^4-21134 q^3-4957 q^2+14414 q+26111+14414 q^{-1} -4957 q^{-2} -21134 q^{-3} -22014 q^{-4} -7226 q^{-5} +12389 q^{-6} +25565 q^{-7} +15962 q^{-8} -2210 q^{-9} -19122 q^{-10} -22071 q^{-11} -9763 q^{-12} +9075 q^{-13} +23466 q^{-14} +17146 q^{-15} +1645 q^{-16} -15121 q^{-17} -20628 q^{-18} -12400 q^{-19} +4000 q^{-20} +18906 q^{-21} +16953 q^{-22} +6032 q^{-23} -8872 q^{-24} -16608 q^{-25} -13643 q^{-26} -1776 q^{-27} +11845 q^{-28} +14013 q^{-29} +8878 q^{-30} -1954 q^{-31} -10070 q^{-32} -11801 q^{-33} -5674 q^{-34} +4312 q^{-35} +8456 q^{-36} +8288 q^{-37} +2689 q^{-38} -3328 q^{-39} -7188 q^{-40} -5842 q^{-41} -590 q^{-42} +2812 q^{-43} +4894 q^{-44} +3470 q^{-45} +658 q^{-46} -2544 q^{-47} -3355 q^{-48} -1725 q^{-49} -247 q^{-50} +1543 q^{-51} +1882 q^{-52} +1343 q^{-53} -189 q^{-54} -1005 q^{-55} -870 q^{-56} -691 q^{-57} +57 q^{-58} +463 q^{-59} +641 q^{-60} +203 q^{-61} -92 q^{-62} -149 q^{-63} -273 q^{-64} -117 q^{-65} +14 q^{-66} +153 q^{-67} +61 q^{-68} +16 q^{-69} +14 q^{-70} -49 q^{-71} -31 q^{-72} -15 q^{-73} +29 q^{-74} +3 q^{-75} -3 q^{-76} +10 q^{-77} -6 q^{-78} -3 q^{-79} -3 q^{-80} +5 q^{-81} + q^{-82} -3 q^{-83} + q^{-84} </math> |

coloured_jones_7 = <math>q^{112}-3 q^{111}+q^{110}+5 q^{109}-3 q^{108}-3 q^{107}-6 q^{106}+6 q^{105}+12 q^{104}-8 q^{103}+6 q^{102}+10 q^{101}-16 q^{100}-26 q^{99}-41 q^{98}+7 q^{97}+74 q^{96}+44 q^{95}+71 q^{94}+43 q^{93}-78 q^{92}-159 q^{91}-283 q^{90}-154 q^{89}+143 q^{88}+317 q^{87}+550 q^{86}+516 q^{85}+93 q^{84}-417 q^{83}-1159 q^{82}-1332 q^{81}-683 q^{80}+256 q^{79}+1725 q^{78}+2573 q^{77}+2216 q^{76}+836 q^{75}-1934 q^{74}-4278 q^{73}-4774 q^{72}-3301 q^{71}+913 q^{70}+5542 q^{69}+8189 q^{68}+7815 q^{67}+2389 q^{66}-5364 q^{65}-11792 q^{64}-14143 q^{63}-8598 q^{62}+2327 q^{61}+13890 q^{60}+21402 q^{59}+18063 q^{58}+4775 q^{57}-12979 q^{56}-28137 q^{55}-29695 q^{54}-16138 q^{53}+7462 q^{52}+32099 q^{51}+41960 q^{50}+31319 q^{49}+3221 q^{48}-31814 q^{47}-52797 q^{46}-48414 q^{45}-18546 q^{44}+26269 q^{43}+60101 q^{42}+65456 q^{41}+37209 q^{40}-15734 q^{39}-62982 q^{38}-80416 q^{37}-56819 q^{36}+1416 q^{35}+61028 q^{34}+91744 q^{33}+75657 q^{32}+14955 q^{31}-55290 q^{30}-98994 q^{29}-91866 q^{28}-31357 q^{27}+46837 q^{26}+102372 q^{25}+104758 q^{24}+46339 q^{23}-37376 q^{22}-102713 q^{21}-113992 q^{20}-58991 q^{19}+28020 q^{18}+101063 q^{17}+120209 q^{16}+68876 q^{15}-19792 q^{14}-98300 q^{13}-123826 q^{12}-76313 q^{11}+12722 q^{10}+95254 q^9+125943 q^8+81699 q^7-7156 q^6-92151 q^5-126720 q^4-85773 q^3+2177 q^2+89089 q+127145+89089 q^{-1} +2177 q^{-2} -85773 q^{-3} -126720 q^{-4} -92151 q^{-5} -7156 q^{-6} +81699 q^{-7} +125943 q^{-8} +95254 q^{-9} +12722 q^{-10} -76313 q^{-11} -123826 q^{-12} -98300 q^{-13} -19792 q^{-14} +68876 q^{-15} +120209 q^{-16} +101063 q^{-17} +28020 q^{-18} -58991 q^{-19} -113992 q^{-20} -102713 q^{-21} -37376 q^{-22} +46339 q^{-23} +104758 q^{-24} +102372 q^{-25} +46837 q^{-26} -31357 q^{-27} -91866 q^{-28} -98994 q^{-29} -55290 q^{-30} +14955 q^{-31} +75657 q^{-32} +91744 q^{-33} +61028 q^{-34} +1416 q^{-35} -56819 q^{-36} -80416 q^{-37} -62982 q^{-38} -15734 q^{-39} +37209 q^{-40} +65456 q^{-41} +60101 q^{-42} +26269 q^{-43} -18546 q^{-44} -48414 q^{-45} -52797 q^{-46} -31814 q^{-47} +3221 q^{-48} +31319 q^{-49} +41960 q^{-50} +32099 q^{-51} +7462 q^{-52} -16138 q^{-53} -29695 q^{-54} -28137 q^{-55} -12979 q^{-56} +4775 q^{-57} +18063 q^{-58} +21402 q^{-59} +13890 q^{-60} +2327 q^{-61} -8598 q^{-62} -14143 q^{-63} -11792 q^{-64} -5364 q^{-65} +2389 q^{-66} +7815 q^{-67} +8189 q^{-68} +5542 q^{-69} +913 q^{-70} -3301 q^{-71} -4774 q^{-72} -4278 q^{-73} -1934 q^{-74} +836 q^{-75} +2216 q^{-76} +2573 q^{-77} +1725 q^{-78} +256 q^{-79} -683 q^{-80} -1332 q^{-81} -1159 q^{-82} -417 q^{-83} +93 q^{-84} +516 q^{-85} +550 q^{-86} +317 q^{-87} +143 q^{-88} -154 q^{-89} -283 q^{-90} -159 q^{-91} -78 q^{-92} +43 q^{-93} +71 q^{-94} +44 q^{-95} +74 q^{-96} +7 q^{-97} -41 q^{-98} -26 q^{-99} -16 q^{-100} +10 q^{-101} +6 q^{-102} -8 q^{-103} +12 q^{-104} +6 q^{-105} -6 q^{-106} -3 q^{-107} -3 q^{-108} +5 q^{-109} + q^{-110} -3 q^{-111} + q^{-112} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr>
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 17]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 12, 14, 4, 16, 2, 10]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 12, 14, 4, 16, 2, 10]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 1, 3, 3, 4, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 17]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 8 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 1, 3, 3, 4, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 17]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 8 2 3
11 - t + -- - - - 8 t + 4 t - t
11 - t + -- - - - 8 t + 4 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 17]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 17]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - z - 2 z - z</nowiki></pre></td></tr>
1 - z - 2 z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 17], Knot[11, NonAlternating, 53]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 17], Knot[11, NonAlternating, 53]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 17]], KnotSignature[Knot[8, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 17]], KnotSignature[Knot[8, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 6 2 3 4

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 6 2 3 4
7 + q - -- + -- - - - 6 q + 5 q - 3 q + q
7 + q - -- + -- - - - 6 q + 5 q - 3 q + q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 17]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 17]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -4 2 2 4 8 10 12

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -4 2 2 4 8 10 12
-1 + q - q + q - q + -- + 2 q - q + q - q + q
-1 + q - q + q - q + -- + 2 q - q + q - q + q
2
2
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 17]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
-2 2 2 2 z 2 2 4 z 2 4 6
-2 2 2 2 z 2 2 4 z 2 4 6
-1 + a + a - 5 z + ---- + 2 a z - 4 z + -- + a z - z
-1 + a + a - 5 z + ---- + 2 a z - 4 z + -- + a z - z
2 2
2 2
a a</nowiki></pre></td></tr>
a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 17]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-2 2 z 2 z 3 2 z 3 z 2 2
-2 2 z 2 z 3 2 z 3 z 2 2
-1 - a - a + -- + --- + 2 a z + a z + 8 z - -- + ---- + 3 a z -
-1 - a - a + -- + --- + 2 a z + a z + 8 z - -- + ---- + 3 a z -
Line 169: Line 118:
4 a z + ---- + 2 a z
4 a z + ---- + 2 a z
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 17]], Vassiliev[3][Knot[8, 17]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 17]], Vassiliev[3][Knot[8, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 3 2 3 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 3 2 3 3
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t +
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q 9 4 7 3 5 3 5 2 3 2 3 q t
Line 181: Line 128:
3 3 2 5 2 5 3 7 3 9 4
3 3 2 5 2 5 3 7 3 9 4
3 q t + 2 q t + 3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
3 q t + 2 q t + 3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 17], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 17], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 -10 9 14 3 28 25 14 47 29 25
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 -10 9 14 3 28 25 14 47 29 25
55 + q - --- + q + -- - -- - -- + -- - -- - -- + -- - -- - -- -
55 + q - --- + q + -- - -- - -- + -- - -- - -- + -- - -- - -- -
11 9 8 7 6 5 4 3 2 q
11 9 8 7 6 5 4 3 2 q
Line 193: Line 139:
10 11 12
10 11 12
q - 3 q + q</nowiki></pre></td></tr>
q - 3 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:38, 30 August 2005

8 16.gif

8_16

8 18.gif

8_18

8 17.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 17's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 17 at Knotilus!

A knot in Brian Sanderson's Garden [1]

Knot presentations

Planar diagram presentation X6271 X14,8,15,7 X8394 X2,13,3,14 X12,5,13,6 X4,9,5,10 X16,12,1,11 X10,16,11,15
Gauss code 1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7
Dowker-Thistlethwaite code 6 8 12 14 4 16 2 10
Conway Notation [.2.2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 8, width is 3,

Braid index is 3

8 17 ML.gif 8 17 AP.gif
[{7, 10}, {9, 2}, {10, 4}, {3, 5}, {4, 8}, {6, 9}, {5, 1}, {2, 7}, {1, 6}, {8, 3}]

[edit Notes on presentations of 8 17]

Knot 8_17.
A graph, knot 8_17.

Three dimensional invariants

Symmetry type Negative amphicheiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-5]
Hyperbolic Volume 10.9859
A-Polynomial See Data:8 17/A-polynomial

[edit Notes for 8 17's three dimensional invariants] 8_17 is the first negatively amphicheiral knot in the Rolfsen Table. Namely, it is equal to the inverse of its mirror, yet it is different from both its inverse and its mirror.

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 17's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 37, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n53,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 17. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234χ
9        11
7       2 -2
5      31 2
3     32  -1
1    43   1
-1   34    1
-3  23     -1
-5 13      2
-7 2       -2
-91        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials