10 29: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- -->
k = 29 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,8,-6,10,-2,3,-4,2,-7,9,-10,5,-8,6,-9,7/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=29|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,8,-6,10,-2,3,-4,2,-7,9,-10,5,-8,6,-9,7/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 12:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 74: Line 38:
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{10}-2 q^9+7 q^7-9 q^6-5 q^5+25 q^4-19 q^3-22 q^2+52 q-22-49 q^{-1} +77 q^{-2} -15 q^{-3} -74 q^{-4} +88 q^{-5} -3 q^{-6} -84 q^{-7} +77 q^{-8} +7 q^{-9} -70 q^{-10} +51 q^{-11} +10 q^{-12} -41 q^{-13} +24 q^{-14} +6 q^{-15} -16 q^{-16} +7 q^{-17} +2 q^{-18} -3 q^{-19} + q^{-20} </math> |

coloured_jones_3 = <math>q^{21}-2 q^{20}+2 q^{18}+4 q^{17}-8 q^{16}-6 q^{15}+11 q^{14}+19 q^{13}-21 q^{12}-32 q^{11}+18 q^{10}+66 q^9-22 q^8-92 q^7-2 q^6+136 q^5+26 q^4-163 q^3-76 q^2+195 q+123-203 q^{-1} -183 q^{-2} +207 q^{-3} +239 q^{-4} -198 q^{-5} -288 q^{-6} +175 q^{-7} +335 q^{-8} -157 q^{-9} -357 q^{-10} +118 q^{-11} +377 q^{-12} -88 q^{-13} -368 q^{-14} +52 q^{-15} +343 q^{-16} -20 q^{-17} -301 q^{-18} -3 q^{-19} +244 q^{-20} +22 q^{-21} -190 q^{-22} -23 q^{-23} +131 q^{-24} +26 q^{-25} -91 q^{-26} -16 q^{-27} +54 q^{-28} +13 q^{-29} -34 q^{-30} -7 q^{-31} +19 q^{-32} +4 q^{-33} -10 q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} -3 q^{-38} + q^{-39} </math> |
{{Display Coloured Jones|J2=<math>q^{10}-2 q^9+7 q^7-9 q^6-5 q^5+25 q^4-19 q^3-22 q^2+52 q-22-49 q^{-1} +77 q^{-2} -15 q^{-3} -74 q^{-4} +88 q^{-5} -3 q^{-6} -84 q^{-7} +77 q^{-8} +7 q^{-9} -70 q^{-10} +51 q^{-11} +10 q^{-12} -41 q^{-13} +24 q^{-14} +6 q^{-15} -16 q^{-16} +7 q^{-17} +2 q^{-18} -3 q^{-19} + q^{-20} </math>|J3=<math>q^{21}-2 q^{20}+2 q^{18}+4 q^{17}-8 q^{16}-6 q^{15}+11 q^{14}+19 q^{13}-21 q^{12}-32 q^{11}+18 q^{10}+66 q^9-22 q^8-92 q^7-2 q^6+136 q^5+26 q^4-163 q^3-76 q^2+195 q+123-203 q^{-1} -183 q^{-2} +207 q^{-3} +239 q^{-4} -198 q^{-5} -288 q^{-6} +175 q^{-7} +335 q^{-8} -157 q^{-9} -357 q^{-10} +118 q^{-11} +377 q^{-12} -88 q^{-13} -368 q^{-14} +52 q^{-15} +343 q^{-16} -20 q^{-17} -301 q^{-18} -3 q^{-19} +244 q^{-20} +22 q^{-21} -190 q^{-22} -23 q^{-23} +131 q^{-24} +26 q^{-25} -91 q^{-26} -16 q^{-27} +54 q^{-28} +13 q^{-29} -34 q^{-30} -7 q^{-31} +19 q^{-32} +4 q^{-33} -10 q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} -3 q^{-38} + q^{-39} </math>|J4=<math>q^{36}-2 q^{35}+2 q^{33}-q^{32}+5 q^{31}-10 q^{30}-2 q^{29}+11 q^{28}+19 q^{26}-37 q^{25}-21 q^{24}+28 q^{23}+19 q^{22}+76 q^{21}-84 q^{20}-93 q^{19}+7 q^{18}+49 q^{17}+243 q^{16}-87 q^{15}-214 q^{14}-133 q^{13}-10 q^{12}+514 q^{11}+65 q^{10}-252 q^9-390 q^8-296 q^7+736 q^6+371 q^5-51 q^4-601 q^3-795 q^2+726 q+663+397 q^{-1} -603 q^{-2} -1338 q^{-3} +473 q^{-4} +794 q^{-5} +934 q^{-6} -399 q^{-7} -1763 q^{-8} +103 q^{-9} +759 q^{-10} +1409 q^{-11} -96 q^{-12} -2014 q^{-13} -271 q^{-14} +617 q^{-15} +1739 q^{-16} +226 q^{-17} -2059 q^{-18} -596 q^{-19} +386 q^{-20} +1859 q^{-21} +525 q^{-22} -1842 q^{-23} -785 q^{-24} +70 q^{-25} +1677 q^{-26} +727 q^{-27} -1365 q^{-28} -748 q^{-29} -234 q^{-30} +1221 q^{-31} +724 q^{-32} -803 q^{-33} -489 q^{-34} -368 q^{-35} +681 q^{-36} +518 q^{-37} -376 q^{-38} -186 q^{-39} -304 q^{-40} +291 q^{-41} +262 q^{-42} -164 q^{-43} -10 q^{-44} -165 q^{-45} +107 q^{-46} +98 q^{-47} -80 q^{-48} +28 q^{-49} -66 q^{-50} +41 q^{-51} +31 q^{-52} -37 q^{-53} +17 q^{-54} -22 q^{-55} +13 q^{-56} +10 q^{-57} -12 q^{-58} +5 q^{-59} -5 q^{-60} +3 q^{-61} +2 q^{-62} -3 q^{-63} + q^{-64} </math>|J5=<math>q^{55}-2 q^{54}+2 q^{52}-q^{51}+3 q^{49}-6 q^{48}-3 q^{47}+10 q^{46}+3 q^{45}-3 q^{44}+q^{43}-21 q^{42}-14 q^{41}+26 q^{40}+38 q^{39}+16 q^{38}-10 q^{37}-76 q^{36}-84 q^{35}+21 q^{34}+121 q^{33}+148 q^{32}+63 q^{31}-163 q^{30}-301 q^{29}-165 q^{28}+141 q^{27}+424 q^{26}+438 q^{25}-35 q^{24}-583 q^{23}-692 q^{22}-260 q^{21}+546 q^{20}+1098 q^{19}+697 q^{18}-414 q^{17}-1304 q^{16}-1281 q^{15}-103 q^{14}+1457 q^{13}+1908 q^{12}+744 q^{11}-1192 q^{10}-2434 q^9-1706 q^8+686 q^7+2749 q^6+2639 q^5+243 q^4-2728 q^3-3618 q^2-1334 q+2354+4333 q^{-1} +2644 q^{-2} -1660 q^{-3} -4871 q^{-4} -3894 q^{-5} +731 q^{-6} +5086 q^{-7} +5093 q^{-8} +347 q^{-9} -5102 q^{-10} -6139 q^{-11} -1433 q^{-12} +4945 q^{-13} +6977 q^{-14} +2507 q^{-15} -4637 q^{-16} -7732 q^{-17} -3485 q^{-18} +4338 q^{-19} +8238 q^{-20} +4389 q^{-21} -3877 q^{-22} -8715 q^{-23} -5218 q^{-24} +3455 q^{-25} +8930 q^{-26} +5943 q^{-27} -2807 q^{-28} -9014 q^{-29} -6598 q^{-30} +2119 q^{-31} +8769 q^{-32} +7081 q^{-33} -1247 q^{-34} -8229 q^{-35} -7347 q^{-36} +307 q^{-37} +7360 q^{-38} +7308 q^{-39} +607 q^{-40} -6190 q^{-41} -6914 q^{-42} -1413 q^{-43} +4861 q^{-44} +6181 q^{-45} +1943 q^{-46} -3455 q^{-47} -5189 q^{-48} -2213 q^{-49} +2232 q^{-50} +4036 q^{-51} +2131 q^{-52} -1174 q^{-53} -2910 q^{-54} -1887 q^{-55} +510 q^{-56} +1913 q^{-57} +1429 q^{-58} -50 q^{-59} -1136 q^{-60} -1031 q^{-61} -107 q^{-62} +611 q^{-63} +622 q^{-64} +162 q^{-65} -281 q^{-66} -357 q^{-67} -122 q^{-68} +116 q^{-69} +171 q^{-70} +76 q^{-71} -43 q^{-72} -75 q^{-73} -27 q^{-74} +8 q^{-75} +25 q^{-76} +20 q^{-77} -12 q^{-78} -15 q^{-79} +8 q^{-80} +4 q^{-81} -6 q^{-82} +10 q^{-83} -5 q^{-84} -11 q^{-85} +9 q^{-86} +4 q^{-87} -6 q^{-88} +3 q^{-89} + q^{-90} -5 q^{-91} +3 q^{-92} +2 q^{-93} -3 q^{-94} + q^{-95} </math>|J6=<math>q^{78}-2 q^{77}+2 q^{75}-q^{74}-2 q^{72}+7 q^{71}-7 q^{70}-4 q^{69}+12 q^{68}-q^{67}-2 q^{66}-15 q^{65}+17 q^{64}-18 q^{63}-13 q^{62}+44 q^{61}+21 q^{60}+7 q^{59}-57 q^{58}+12 q^{57}-80 q^{56}-62 q^{55}+111 q^{54}+126 q^{53}+125 q^{52}-72 q^{51}-4 q^{50}-301 q^{49}-331 q^{48}+59 q^{47}+305 q^{46}+526 q^{45}+235 q^{44}+277 q^{43}-611 q^{42}-1048 q^{41}-618 q^{40}+48 q^{39}+989 q^{38}+1116 q^{37}+1608 q^{36}-164 q^{35}-1721 q^{34}-2173 q^{33}-1621 q^{32}+204 q^{31}+1654 q^{30}+4090 q^{29}+2277 q^{28}-477 q^{27}-3139 q^{26}-4476 q^{25}-3265 q^{24}-615 q^{23}+5500 q^{22}+6044 q^{21}+4198 q^{20}-468 q^{19}-5462 q^{18}-8166 q^{17}-7113 q^{16}+2229 q^{15}+7294 q^{14}+10366 q^{13}+7067 q^{12}-622 q^{11}-9955 q^{10}-15174 q^9-6663 q^8+1941 q^7+12959 q^6+16223 q^5+10502 q^4-4643 q^3-19414 q^2-17457 q-9965+8260 q^{-1} +21640 q^{-2} +23786 q^{-3} +7203 q^{-4} -16544 q^{-5} -24959 q^{-6} -24093 q^{-7} -2710 q^{-8} +20589 q^{-9} +34267 q^{-10} +21211 q^{-11} -7938 q^{-12} -26917 q^{-13} -35843 q^{-14} -15678 q^{-15} +14668 q^{-16} +39995 q^{-17} +33232 q^{-18} +2429 q^{-19} -24898 q^{-20} -43557 q^{-21} -26982 q^{-22} +7365 q^{-23} +42224 q^{-24} +41906 q^{-25} +11595 q^{-26} -21640 q^{-27} -48225 q^{-28} -35645 q^{-29} +776 q^{-30} +42782 q^{-31} +48068 q^{-32} +19232 q^{-33} -18181 q^{-34} -50983 q^{-35} -42551 q^{-36} -5554 q^{-37} +41640 q^{-38} +52353 q^{-39} +26526 q^{-40} -13171 q^{-41} -51036 q^{-42} -48038 q^{-43} -13117 q^{-44} +36742 q^{-45} +53348 q^{-46} +33526 q^{-47} -4901 q^{-48} -45872 q^{-49} -50120 q^{-50} -21564 q^{-51} +26481 q^{-52} +48210 q^{-53} +37547 q^{-54} +5647 q^{-55} -34179 q^{-56} -45630 q^{-57} -27459 q^{-58} +12768 q^{-59} +36024 q^{-60} +35048 q^{-61} +14147 q^{-62} -18799 q^{-63} -34047 q^{-64} -26973 q^{-65} +876 q^{-66} +20438 q^{-67} +25813 q^{-68} +16477 q^{-69} -5621 q^{-70} -19567 q^{-71} -20163 q^{-72} -4880 q^{-73} +7524 q^{-74} +14221 q^{-75} +12831 q^{-76} +1275 q^{-77} -7979 q^{-78} -11296 q^{-79} -4823 q^{-80} +716 q^{-81} +5377 q^{-82} +7147 q^{-83} +2578 q^{-84} -1906 q^{-85} -4661 q^{-86} -2479 q^{-87} -1080 q^{-88} +1043 q^{-89} +2903 q^{-90} +1556 q^{-91} -3 q^{-92} -1407 q^{-93} -655 q^{-94} -796 q^{-95} -185 q^{-96} +884 q^{-97} +550 q^{-98} +183 q^{-99} -342 q^{-100} +43 q^{-101} -307 q^{-102} -239 q^{-103} +231 q^{-104} +118 q^{-105} +66 q^{-106} -103 q^{-107} +124 q^{-108} -77 q^{-109} -110 q^{-110} +70 q^{-111} +16 q^{-112} +9 q^{-113} -49 q^{-114} +63 q^{-115} -14 q^{-116} -36 q^{-117} +26 q^{-118} + q^{-119} +2 q^{-120} -22 q^{-121} +20 q^{-122} -12 q^{-124} +9 q^{-125} - q^{-126} + q^{-127} -5 q^{-128} +3 q^{-129} +2 q^{-130} -3 q^{-131} + q^{-132} </math>|J7=<math>q^{105}-2 q^{104}+2 q^{102}-q^{101}-2 q^{99}+2 q^{98}+6 q^{97}-8 q^{96}-2 q^{95}+8 q^{94}-q^{93}-14 q^{91}-3 q^{90}+24 q^{89}-15 q^{88}-q^{87}+26 q^{86}+10 q^{85}+12 q^{84}-55 q^{83}-52 q^{82}+24 q^{81}-31 q^{80}+16 q^{79}+97 q^{78}+87 q^{77}+119 q^{76}-86 q^{75}-210 q^{74}-121 q^{73}-226 q^{72}-54 q^{71}+212 q^{70}+361 q^{69}+599 q^{68}+233 q^{67}-260 q^{66}-479 q^{65}-988 q^{64}-807 q^{63}-162 q^{62}+531 q^{61}+1682 q^{60}+1675 q^{59}+907 q^{58}-70 q^{57}-2027 q^{56}-2889 q^{55}-2516 q^{54}-1214 q^{53}+1907 q^{52}+3969 q^{51}+4570 q^{50}+3768 q^{49}-359 q^{48}-4311 q^{47}-6869 q^{46}-7344 q^{45}-2908 q^{44}+2648 q^{43}+8050 q^{42}+11651 q^{41}+8330 q^{40}+1476 q^{39}-7013 q^{38}-14769 q^{37}-14688 q^{36}-9053 q^{35}+1811 q^{34}+15366 q^{33}+20924 q^{32}+18669 q^{31}+7512 q^{30}-10661 q^{29}-23600 q^{28}-29038 q^{27}-21549 q^{26}-27 q^{25}+21106 q^{24}+36591 q^{23}+37126 q^{22}+17144 q^{21}-10101 q^{20}-38328 q^{19}-52201 q^{18}-38786 q^{17}-8817 q^{16}+31293 q^{15}+61734 q^{14}+61750 q^{13}+35588 q^{12}-13940 q^{11}-63320 q^{10}-82056 q^9-66428 q^8-13172 q^7+53820 q^6+95720 q^5+98216 q^4+47860 q^3-33536 q^2-99851 q-126199-86748 q^{-1} +3227 q^{-2} +93394 q^{-3} +147684 q^{-4} +125722 q^{-5} +33626 q^{-6} -76594 q^{-7} -160161 q^{-8} -161492 q^{-9} -74156 q^{-10} +51740 q^{-11} +163865 q^{-12} +191407 q^{-13} +114305 q^{-14} -21609 q^{-15} -159338 q^{-16} -214306 q^{-17} -151737 q^{-18} -10778 q^{-19} +148970 q^{-20} +230506 q^{-21} +184411 q^{-22} +42340 q^{-23} -135090 q^{-24} -240602 q^{-25} -211600 q^{-26} -71598 q^{-27} +119816 q^{-28} +246742 q^{-29} +233915 q^{-30} +96877 q^{-31} -105415 q^{-32} -250020 q^{-33} -251587 q^{-34} -118624 q^{-35} +92064 q^{-36} +252287 q^{-37} +266801 q^{-38} +137096 q^{-39} -80887 q^{-40} -254033 q^{-41} -279589 q^{-42} -153718 q^{-43} +69943 q^{-44} +255301 q^{-45} +292026 q^{-46} +169840 q^{-47} -59025 q^{-48} -255318 q^{-49} -303026 q^{-50} -186429 q^{-51} +45268 q^{-52} +252299 q^{-53} +312782 q^{-54} +204183 q^{-55} -28002 q^{-56} -244395 q^{-57} -318915 q^{-58} -222318 q^{-59} +5869 q^{-60} +229399 q^{-61} +319450 q^{-62} +239268 q^{-63} +20668 q^{-64} -206156 q^{-65} -311912 q^{-66} -252302 q^{-67} -49809 q^{-68} +174662 q^{-69} +294207 q^{-70} +258423 q^{-71} +78794 q^{-72} -136439 q^{-73} -266107 q^{-74} -255090 q^{-75} -103692 q^{-76} +94716 q^{-77} +228591 q^{-78} +240884 q^{-79} +121305 q^{-80} -53659 q^{-81} -184847 q^{-82} -216230 q^{-83} -129069 q^{-84} +17359 q^{-85} +138902 q^{-86} +183714 q^{-87} +126530 q^{-88} +10592 q^{-89} -95544 q^{-90} -146640 q^{-91} -114677 q^{-92} -28947 q^{-93} +58171 q^{-94} +109680 q^{-95} +96799 q^{-96} +37392 q^{-97} -29714 q^{-98} -76096 q^{-99} -75574 q^{-100} -38122 q^{-101} +9883 q^{-102} +48745 q^{-103} +55163 q^{-104} +33480 q^{-105} +1331 q^{-106} -28379 q^{-107} -37025 q^{-108} -26281 q^{-109} -6716 q^{-110} +14647 q^{-111} +23161 q^{-112} +18774 q^{-113} +7812 q^{-114} -6457 q^{-115} -13221 q^{-116} -12171 q^{-117} -6870 q^{-118} +2045 q^{-119} +6850 q^{-120} +7253 q^{-121} +5186 q^{-122} -120 q^{-123} -3198 q^{-124} -3922 q^{-125} -3443 q^{-126} -474 q^{-127} +1226 q^{-128} +1847 q^{-129} +2136 q^{-130} +567 q^{-131} -346 q^{-132} -813 q^{-133} -1241 q^{-134} -327 q^{-135} +44 q^{-136} +195 q^{-137} +628 q^{-138} +238 q^{-139} +114 q^{-140} -47 q^{-141} -397 q^{-142} -56 q^{-143} -19 q^{-144} -68 q^{-145} +133 q^{-146} +30 q^{-147} +87 q^{-148} +44 q^{-149} -137 q^{-150} +14 q^{-151} +19 q^{-152} -40 q^{-153} +22 q^{-154} -20 q^{-155} +33 q^{-156} +27 q^{-157} -51 q^{-158} +11 q^{-159} +14 q^{-160} -7 q^{-161} +4 q^{-162} -15 q^{-163} +9 q^{-164} +11 q^{-165} -16 q^{-166} +3 q^{-167} +5 q^{-168} - q^{-169} + q^{-170} -5 q^{-171} +3 q^{-172} +2 q^{-173} -3 q^{-174} + q^{-175} </math>}}
coloured_jones_4 = <math>q^{36}-2 q^{35}+2 q^{33}-q^{32}+5 q^{31}-10 q^{30}-2 q^{29}+11 q^{28}+19 q^{26}-37 q^{25}-21 q^{24}+28 q^{23}+19 q^{22}+76 q^{21}-84 q^{20}-93 q^{19}+7 q^{18}+49 q^{17}+243 q^{16}-87 q^{15}-214 q^{14}-133 q^{13}-10 q^{12}+514 q^{11}+65 q^{10}-252 q^9-390 q^8-296 q^7+736 q^6+371 q^5-51 q^4-601 q^3-795 q^2+726 q+663+397 q^{-1} -603 q^{-2} -1338 q^{-3} +473 q^{-4} +794 q^{-5} +934 q^{-6} -399 q^{-7} -1763 q^{-8} +103 q^{-9} +759 q^{-10} +1409 q^{-11} -96 q^{-12} -2014 q^{-13} -271 q^{-14} +617 q^{-15} +1739 q^{-16} +226 q^{-17} -2059 q^{-18} -596 q^{-19} +386 q^{-20} +1859 q^{-21} +525 q^{-22} -1842 q^{-23} -785 q^{-24} +70 q^{-25} +1677 q^{-26} +727 q^{-27} -1365 q^{-28} -748 q^{-29} -234 q^{-30} +1221 q^{-31} +724 q^{-32} -803 q^{-33} -489 q^{-34} -368 q^{-35} +681 q^{-36} +518 q^{-37} -376 q^{-38} -186 q^{-39} -304 q^{-40} +291 q^{-41} +262 q^{-42} -164 q^{-43} -10 q^{-44} -165 q^{-45} +107 q^{-46} +98 q^{-47} -80 q^{-48} +28 q^{-49} -66 q^{-50} +41 q^{-51} +31 q^{-52} -37 q^{-53} +17 q^{-54} -22 q^{-55} +13 q^{-56} +10 q^{-57} -12 q^{-58} +5 q^{-59} -5 q^{-60} +3 q^{-61} +2 q^{-62} -3 q^{-63} + q^{-64} </math> |

coloured_jones_5 = <math>q^{55}-2 q^{54}+2 q^{52}-q^{51}+3 q^{49}-6 q^{48}-3 q^{47}+10 q^{46}+3 q^{45}-3 q^{44}+q^{43}-21 q^{42}-14 q^{41}+26 q^{40}+38 q^{39}+16 q^{38}-10 q^{37}-76 q^{36}-84 q^{35}+21 q^{34}+121 q^{33}+148 q^{32}+63 q^{31}-163 q^{30}-301 q^{29}-165 q^{28}+141 q^{27}+424 q^{26}+438 q^{25}-35 q^{24}-583 q^{23}-692 q^{22}-260 q^{21}+546 q^{20}+1098 q^{19}+697 q^{18}-414 q^{17}-1304 q^{16}-1281 q^{15}-103 q^{14}+1457 q^{13}+1908 q^{12}+744 q^{11}-1192 q^{10}-2434 q^9-1706 q^8+686 q^7+2749 q^6+2639 q^5+243 q^4-2728 q^3-3618 q^2-1334 q+2354+4333 q^{-1} +2644 q^{-2} -1660 q^{-3} -4871 q^{-4} -3894 q^{-5} +731 q^{-6} +5086 q^{-7} +5093 q^{-8} +347 q^{-9} -5102 q^{-10} -6139 q^{-11} -1433 q^{-12} +4945 q^{-13} +6977 q^{-14} +2507 q^{-15} -4637 q^{-16} -7732 q^{-17} -3485 q^{-18} +4338 q^{-19} +8238 q^{-20} +4389 q^{-21} -3877 q^{-22} -8715 q^{-23} -5218 q^{-24} +3455 q^{-25} +8930 q^{-26} +5943 q^{-27} -2807 q^{-28} -9014 q^{-29} -6598 q^{-30} +2119 q^{-31} +8769 q^{-32} +7081 q^{-33} -1247 q^{-34} -8229 q^{-35} -7347 q^{-36} +307 q^{-37} +7360 q^{-38} +7308 q^{-39} +607 q^{-40} -6190 q^{-41} -6914 q^{-42} -1413 q^{-43} +4861 q^{-44} +6181 q^{-45} +1943 q^{-46} -3455 q^{-47} -5189 q^{-48} -2213 q^{-49} +2232 q^{-50} +4036 q^{-51} +2131 q^{-52} -1174 q^{-53} -2910 q^{-54} -1887 q^{-55} +510 q^{-56} +1913 q^{-57} +1429 q^{-58} -50 q^{-59} -1136 q^{-60} -1031 q^{-61} -107 q^{-62} +611 q^{-63} +622 q^{-64} +162 q^{-65} -281 q^{-66} -357 q^{-67} -122 q^{-68} +116 q^{-69} +171 q^{-70} +76 q^{-71} -43 q^{-72} -75 q^{-73} -27 q^{-74} +8 q^{-75} +25 q^{-76} +20 q^{-77} -12 q^{-78} -15 q^{-79} +8 q^{-80} +4 q^{-81} -6 q^{-82} +10 q^{-83} -5 q^{-84} -11 q^{-85} +9 q^{-86} +4 q^{-87} -6 q^{-88} +3 q^{-89} + q^{-90} -5 q^{-91} +3 q^{-92} +2 q^{-93} -3 q^{-94} + q^{-95} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{78}-2 q^{77}+2 q^{75}-q^{74}-2 q^{72}+7 q^{71}-7 q^{70}-4 q^{69}+12 q^{68}-q^{67}-2 q^{66}-15 q^{65}+17 q^{64}-18 q^{63}-13 q^{62}+44 q^{61}+21 q^{60}+7 q^{59}-57 q^{58}+12 q^{57}-80 q^{56}-62 q^{55}+111 q^{54}+126 q^{53}+125 q^{52}-72 q^{51}-4 q^{50}-301 q^{49}-331 q^{48}+59 q^{47}+305 q^{46}+526 q^{45}+235 q^{44}+277 q^{43}-611 q^{42}-1048 q^{41}-618 q^{40}+48 q^{39}+989 q^{38}+1116 q^{37}+1608 q^{36}-164 q^{35}-1721 q^{34}-2173 q^{33}-1621 q^{32}+204 q^{31}+1654 q^{30}+4090 q^{29}+2277 q^{28}-477 q^{27}-3139 q^{26}-4476 q^{25}-3265 q^{24}-615 q^{23}+5500 q^{22}+6044 q^{21}+4198 q^{20}-468 q^{19}-5462 q^{18}-8166 q^{17}-7113 q^{16}+2229 q^{15}+7294 q^{14}+10366 q^{13}+7067 q^{12}-622 q^{11}-9955 q^{10}-15174 q^9-6663 q^8+1941 q^7+12959 q^6+16223 q^5+10502 q^4-4643 q^3-19414 q^2-17457 q-9965+8260 q^{-1} +21640 q^{-2} +23786 q^{-3} +7203 q^{-4} -16544 q^{-5} -24959 q^{-6} -24093 q^{-7} -2710 q^{-8} +20589 q^{-9} +34267 q^{-10} +21211 q^{-11} -7938 q^{-12} -26917 q^{-13} -35843 q^{-14} -15678 q^{-15} +14668 q^{-16} +39995 q^{-17} +33232 q^{-18} +2429 q^{-19} -24898 q^{-20} -43557 q^{-21} -26982 q^{-22} +7365 q^{-23} +42224 q^{-24} +41906 q^{-25} +11595 q^{-26} -21640 q^{-27} -48225 q^{-28} -35645 q^{-29} +776 q^{-30} +42782 q^{-31} +48068 q^{-32} +19232 q^{-33} -18181 q^{-34} -50983 q^{-35} -42551 q^{-36} -5554 q^{-37} +41640 q^{-38} +52353 q^{-39} +26526 q^{-40} -13171 q^{-41} -51036 q^{-42} -48038 q^{-43} -13117 q^{-44} +36742 q^{-45} +53348 q^{-46} +33526 q^{-47} -4901 q^{-48} -45872 q^{-49} -50120 q^{-50} -21564 q^{-51} +26481 q^{-52} +48210 q^{-53} +37547 q^{-54} +5647 q^{-55} -34179 q^{-56} -45630 q^{-57} -27459 q^{-58} +12768 q^{-59} +36024 q^{-60} +35048 q^{-61} +14147 q^{-62} -18799 q^{-63} -34047 q^{-64} -26973 q^{-65} +876 q^{-66} +20438 q^{-67} +25813 q^{-68} +16477 q^{-69} -5621 q^{-70} -19567 q^{-71} -20163 q^{-72} -4880 q^{-73} +7524 q^{-74} +14221 q^{-75} +12831 q^{-76} +1275 q^{-77} -7979 q^{-78} -11296 q^{-79} -4823 q^{-80} +716 q^{-81} +5377 q^{-82} +7147 q^{-83} +2578 q^{-84} -1906 q^{-85} -4661 q^{-86} -2479 q^{-87} -1080 q^{-88} +1043 q^{-89} +2903 q^{-90} +1556 q^{-91} -3 q^{-92} -1407 q^{-93} -655 q^{-94} -796 q^{-95} -185 q^{-96} +884 q^{-97} +550 q^{-98} +183 q^{-99} -342 q^{-100} +43 q^{-101} -307 q^{-102} -239 q^{-103} +231 q^{-104} +118 q^{-105} +66 q^{-106} -103 q^{-107} +124 q^{-108} -77 q^{-109} -110 q^{-110} +70 q^{-111} +16 q^{-112} +9 q^{-113} -49 q^{-114} +63 q^{-115} -14 q^{-116} -36 q^{-117} +26 q^{-118} + q^{-119} +2 q^{-120} -22 q^{-121} +20 q^{-122} -12 q^{-124} +9 q^{-125} - q^{-126} + q^{-127} -5 q^{-128} +3 q^{-129} +2 q^{-130} -3 q^{-131} + q^{-132} </math> |

coloured_jones_7 = <math>q^{105}-2 q^{104}+2 q^{102}-q^{101}-2 q^{99}+2 q^{98}+6 q^{97}-8 q^{96}-2 q^{95}+8 q^{94}-q^{93}-14 q^{91}-3 q^{90}+24 q^{89}-15 q^{88}-q^{87}+26 q^{86}+10 q^{85}+12 q^{84}-55 q^{83}-52 q^{82}+24 q^{81}-31 q^{80}+16 q^{79}+97 q^{78}+87 q^{77}+119 q^{76}-86 q^{75}-210 q^{74}-121 q^{73}-226 q^{72}-54 q^{71}+212 q^{70}+361 q^{69}+599 q^{68}+233 q^{67}-260 q^{66}-479 q^{65}-988 q^{64}-807 q^{63}-162 q^{62}+531 q^{61}+1682 q^{60}+1675 q^{59}+907 q^{58}-70 q^{57}-2027 q^{56}-2889 q^{55}-2516 q^{54}-1214 q^{53}+1907 q^{52}+3969 q^{51}+4570 q^{50}+3768 q^{49}-359 q^{48}-4311 q^{47}-6869 q^{46}-7344 q^{45}-2908 q^{44}+2648 q^{43}+8050 q^{42}+11651 q^{41}+8330 q^{40}+1476 q^{39}-7013 q^{38}-14769 q^{37}-14688 q^{36}-9053 q^{35}+1811 q^{34}+15366 q^{33}+20924 q^{32}+18669 q^{31}+7512 q^{30}-10661 q^{29}-23600 q^{28}-29038 q^{27}-21549 q^{26}-27 q^{25}+21106 q^{24}+36591 q^{23}+37126 q^{22}+17144 q^{21}-10101 q^{20}-38328 q^{19}-52201 q^{18}-38786 q^{17}-8817 q^{16}+31293 q^{15}+61734 q^{14}+61750 q^{13}+35588 q^{12}-13940 q^{11}-63320 q^{10}-82056 q^9-66428 q^8-13172 q^7+53820 q^6+95720 q^5+98216 q^4+47860 q^3-33536 q^2-99851 q-126199-86748 q^{-1} +3227 q^{-2} +93394 q^{-3} +147684 q^{-4} +125722 q^{-5} +33626 q^{-6} -76594 q^{-7} -160161 q^{-8} -161492 q^{-9} -74156 q^{-10} +51740 q^{-11} +163865 q^{-12} +191407 q^{-13} +114305 q^{-14} -21609 q^{-15} -159338 q^{-16} -214306 q^{-17} -151737 q^{-18} -10778 q^{-19} +148970 q^{-20} +230506 q^{-21} +184411 q^{-22} +42340 q^{-23} -135090 q^{-24} -240602 q^{-25} -211600 q^{-26} -71598 q^{-27} +119816 q^{-28} +246742 q^{-29} +233915 q^{-30} +96877 q^{-31} -105415 q^{-32} -250020 q^{-33} -251587 q^{-34} -118624 q^{-35} +92064 q^{-36} +252287 q^{-37} +266801 q^{-38} +137096 q^{-39} -80887 q^{-40} -254033 q^{-41} -279589 q^{-42} -153718 q^{-43} +69943 q^{-44} +255301 q^{-45} +292026 q^{-46} +169840 q^{-47} -59025 q^{-48} -255318 q^{-49} -303026 q^{-50} -186429 q^{-51} +45268 q^{-52} +252299 q^{-53} +312782 q^{-54} +204183 q^{-55} -28002 q^{-56} -244395 q^{-57} -318915 q^{-58} -222318 q^{-59} +5869 q^{-60} +229399 q^{-61} +319450 q^{-62} +239268 q^{-63} +20668 q^{-64} -206156 q^{-65} -311912 q^{-66} -252302 q^{-67} -49809 q^{-68} +174662 q^{-69} +294207 q^{-70} +258423 q^{-71} +78794 q^{-72} -136439 q^{-73} -266107 q^{-74} -255090 q^{-75} -103692 q^{-76} +94716 q^{-77} +228591 q^{-78} +240884 q^{-79} +121305 q^{-80} -53659 q^{-81} -184847 q^{-82} -216230 q^{-83} -129069 q^{-84} +17359 q^{-85} +138902 q^{-86} +183714 q^{-87} +126530 q^{-88} +10592 q^{-89} -95544 q^{-90} -146640 q^{-91} -114677 q^{-92} -28947 q^{-93} +58171 q^{-94} +109680 q^{-95} +96799 q^{-96} +37392 q^{-97} -29714 q^{-98} -76096 q^{-99} -75574 q^{-100} -38122 q^{-101} +9883 q^{-102} +48745 q^{-103} +55163 q^{-104} +33480 q^{-105} +1331 q^{-106} -28379 q^{-107} -37025 q^{-108} -26281 q^{-109} -6716 q^{-110} +14647 q^{-111} +23161 q^{-112} +18774 q^{-113} +7812 q^{-114} -6457 q^{-115} -13221 q^{-116} -12171 q^{-117} -6870 q^{-118} +2045 q^{-119} +6850 q^{-120} +7253 q^{-121} +5186 q^{-122} -120 q^{-123} -3198 q^{-124} -3922 q^{-125} -3443 q^{-126} -474 q^{-127} +1226 q^{-128} +1847 q^{-129} +2136 q^{-130} +567 q^{-131} -346 q^{-132} -813 q^{-133} -1241 q^{-134} -327 q^{-135} +44 q^{-136} +195 q^{-137} +628 q^{-138} +238 q^{-139} +114 q^{-140} -47 q^{-141} -397 q^{-142} -56 q^{-143} -19 q^{-144} -68 q^{-145} +133 q^{-146} +30 q^{-147} +87 q^{-148} +44 q^{-149} -137 q^{-150} +14 q^{-151} +19 q^{-152} -40 q^{-153} +22 q^{-154} -20 q^{-155} +33 q^{-156} +27 q^{-157} -51 q^{-158} +11 q^{-159} +14 q^{-160} -7 q^{-161} +4 q^{-162} -15 q^{-163} +9 q^{-164} +11 q^{-165} -16 q^{-166} +3 q^{-167} +5 q^{-168} - q^{-169} + q^{-170} -5 q^{-171} +3 q^{-172} +2 q^{-173} -3 q^{-174} + q^{-175} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[5, 16, 6, 17], X[7, 18, 8, 19], X[13, 1, 14, 20], X[17, 6, 18, 7],
X[5, 16, 6, 17], X[7, 18, 8, 19], X[13, 1, 14, 20], X[17, 6, 18, 7],
X[19, 15, 20, 14], X[15, 8, 16, 9]]</nowiki></pre></td></tr>
X[19, 15, 20, 14], X[15, 8, 16, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 29]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8,
6, -9, 7]</nowiki></pre></td></tr>
6, -9, 7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 29]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 18, 12, 2, 20, 8, 6, 14]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 18, 12, 2, 20, 8, 6, 14]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 29]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 29]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_29_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 29]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 29]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 29]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 15 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 29]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_29_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 29]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 29]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 15 2 3
-17 + t - -- + -- + 15 t - 7 t + t
-17 + t - -- + -- + 15 t - 7 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 29]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 29]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - 4 z - z + z</nowiki></pre></td></tr>
1 - 4 z - z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 29]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 29]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 29]], KnotSignature[Knot[10, 29]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{63, -2}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 29]], KnotSignature[Knot[10, 29]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 29]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{63, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 6 8 10 11 9 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 29]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 6 8 10 11 9 2 3
-7 + q - -- + -- - -- + -- - -- + - + 5 q - 2 q + q
-7 + q - -- + -- - -- + -- - -- + - + 5 q - 2 q + q
6 5 4 3 2 q
6 5 4 3 2 q
q q q q q</nowiki></pre></td></tr>
q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 29]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 29]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 29]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -18 2 -14 -12 -10 2 -6 3 -2 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 29]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -18 2 -14 -12 -10 2 -6 3 -2 2
q - q + --- - q + q + q - -- + q - -- + q - q +
q - q + --- - q + q + q - -- + q - -- + q - q +
16 8 4
16 8 4
Line 149: Line 100:
4 8 10
4 8 10
2 q + q + q</nowiki></pre></td></tr>
2 q + q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 29]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 29]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 2 4 6 2 z 2 2 4 2 6 2 4
2 2 4 6 2 z 2 2 4 2 6 2 4
-2 + -- + a - a + a - 5 z + -- + 3 a z - 4 a z + a z - 2 z +
-2 + -- + a - a + a - 5 z + -- + 3 a z - 4 a z + a z - 2 z +
Line 159: Line 109:
2 4 4 4 2 6
2 4 4 4 2 6
3 a z - 2 a z + a z</nowiki></pre></td></tr>
3 a z - 2 a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 29]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 29]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 2 4 6 5 2 5 z 4 2
2 2 4 6 5 2 5 z 4 2
-2 - -- - a - a - a + 2 a z - 2 a z + 6 z + ---- + 4 a z +
-2 - -- - a - a - a + 2 a z - 2 a z + 6 z + ---- + 4 a z +
Line 186: Line 135:
7 3 7 5 7 8 2 8 4 8 9 3 9
7 3 7 5 7 8 2 8 4 8 9 3 9
2 a z + 5 a z + 5 a z + 2 z + 5 a z + 3 a z + a z + a z</nowiki></pre></td></tr>
2 a z + 5 a z + 5 a z + 2 z + 5 a z + 3 a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 29]], Vassiliev[3][Knot[10, 29]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 29]], Vassiliev[3][Knot[10, 29]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-4, 3}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-4, 3}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 29]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 6 1 2 1 4 2 4 4

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 29]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 6 1 2 1 4 2 4 4
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
Line 203: Line 150:
5 3 7 4
5 3 7 4
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 29], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 29], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 3 2 7 16 6 24 41 10 51
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 3 2 7 16 6 24 41 10 51
-22 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
-22 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
19 18 17 16 15 14 13 12 11
19 18 17 16 15 14 13 12 11
Line 217: Line 163:
3 4 5 6 7 9 10
3 4 5 6 7 9 10
19 q + 25 q - 5 q - 9 q + 7 q - 2 q + q</nowiki></pre></td></tr>
19 q + 25 q - 5 q - 9 q + 7 q - 2 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:38, 30 August 2005

10 28.gif

10_28

10 30.gif

10_30

10 29.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 29's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 29 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,17 X7,18,8,19 X13,1,14,20 X17,6,18,7 X19,15,20,14 X15,8,16,9
Gauss code -1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8, 6, -9, 7
Dowker-Thistlethwaite code 4 10 16 18 12 2 20 8 6 14
Conway Notation [31222]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

10 29 ML.gif 10 29 AP.gif
[{12, 9}, {10, 8}, {9, 11}, {5, 10}, {7, 1}, {8, 2}, {1, 3}, {2, 6}, {4, 7}, {6, 12}, {3, 5}, {11, 4}]

[edit Notes on presentations of 10 29]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-3]
Hyperbolic Volume 11.6029
A-Polynomial See Data:10 29/A-polynomial

[edit Notes for 10 29's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 10 29's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 63, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-4, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 29. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-101234χ
7          11
5         1 -1
3        41 3
1       31  -2
-1      64   2
-3     64    -2
-5    45     -1
-7   46      2
-9  24       -2
-11 14        3
-13 2         -2
-151          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials