9 39: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- --> |
|||
k = 39 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,7,-6,1,-3,9,-5,2,-8,4,-9,6,-7,5,-4,3/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=39|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,7,-6,1,-3,9,-5,2,-8,4,-9,6,-7,5,-4,3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 27: | Line 12: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 12 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 12, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[K11n162]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = [[K11n11]], [[K11n112]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n162]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[K11n11]], [[K11n112]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 73: | Line 37: | ||
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-3 q^{22}+q^{21}+10 q^{20}-16 q^{19}-5 q^{18}+37 q^{17}-30 q^{16}-27 q^{15}+69 q^{14}-32 q^{13}-55 q^{12}+89 q^{11}-23 q^{10}-72 q^9+88 q^8-9 q^7-68 q^6+62 q^5+4 q^4-45 q^3+28 q^2+7 q-17+7 q^{-1} +2 q^{-2} -3 q^{-3} + q^{-4} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+3 q^{44}-q^{43}-5 q^{42}-2 q^{41}+16 q^{40}+8 q^{39}-33 q^{38}-26 q^{37}+51 q^{36}+62 q^{35}-59 q^{34}-120 q^{33}+58 q^{32}+179 q^{31}-25 q^{30}-245 q^{29}-25 q^{28}+298 q^{27}+91 q^{26}-336 q^{25}-162 q^{24}+356 q^{23}+229 q^{22}-357 q^{21}-293 q^{20}+353 q^{19}+331 q^{18}-321 q^{17}-370 q^{16}+291 q^{15}+372 q^{14}-227 q^{13}-373 q^{12}+172 q^{11}+336 q^{10}-100 q^9-288 q^8+44 q^7+220 q^6+2 q^5-156 q^4-18 q^3+91 q^2+25 q-49-17 q^{-1} +23 q^{-2} +8 q^{-3} -10 q^{-4} -2 q^{-5} +3 q^{-6} +2 q^{-7} -3 q^{-8} + q^{-9} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{23}-3 q^{22}+q^{21}+10 q^{20}-16 q^{19}-5 q^{18}+37 q^{17}-30 q^{16}-27 q^{15}+69 q^{14}-32 q^{13}-55 q^{12}+89 q^{11}-23 q^{10}-72 q^9+88 q^8-9 q^7-68 q^6+62 q^5+4 q^4-45 q^3+28 q^2+7 q-17+7 q^{-1} +2 q^{-2} -3 q^{-3} + q^{-4} </math>|J3=<math>-q^{45}+3 q^{44}-q^{43}-5 q^{42}-2 q^{41}+16 q^{40}+8 q^{39}-33 q^{38}-26 q^{37}+51 q^{36}+62 q^{35}-59 q^{34}-120 q^{33}+58 q^{32}+179 q^{31}-25 q^{30}-245 q^{29}-25 q^{28}+298 q^{27}+91 q^{26}-336 q^{25}-162 q^{24}+356 q^{23}+229 q^{22}-357 q^{21}-293 q^{20}+353 q^{19}+331 q^{18}-321 q^{17}-370 q^{16}+291 q^{15}+372 q^{14}-227 q^{13}-373 q^{12}+172 q^{11}+336 q^{10}-100 q^9-288 q^8+44 q^7+220 q^6+2 q^5-156 q^4-18 q^3+91 q^2+25 q-49-17 q^{-1} +23 q^{-2} +8 q^{-3} -10 q^{-4} -2 q^{-5} +3 q^{-6} +2 q^{-7} -3 q^{-8} + q^{-9} </math>|J4=<math>q^{74}-3 q^{73}+q^{72}+5 q^{71}-3 q^{70}+2 q^{69}-19 q^{68}+4 q^{67}+35 q^{66}+5 q^{65}+6 q^{64}-100 q^{63}-38 q^{62}+108 q^{61}+105 q^{60}+116 q^{59}-260 q^{58}-268 q^{57}+55 q^{56}+286 q^{55}+546 q^{54}-254 q^{53}-651 q^{52}-380 q^{51}+228 q^{50}+1217 q^{49}+209 q^{48}-799 q^{47}-1105 q^{46}-348 q^{45}+1710 q^{44}+1002 q^{43}-452 q^{42}-1713 q^{41}-1256 q^{40}+1765 q^{39}+1727 q^{38}+220 q^{37}-1981 q^{36}-2105 q^{35}+1508 q^{34}+2169 q^{33}+889 q^{32}-1969 q^{31}-2683 q^{30}+1123 q^{29}+2332 q^{28}+1419 q^{27}-1747 q^{26}-2957 q^{25}+634 q^{24}+2205 q^{23}+1798 q^{22}-1260 q^{21}-2863 q^{20}+26 q^{19}+1701 q^{18}+1925 q^{17}-533 q^{16}-2296 q^{15}-489 q^{14}+881 q^{13}+1614 q^{12}+137 q^{11}-1364 q^{10}-612 q^9+132 q^8+950 q^7+384 q^6-521 q^5-358 q^4-174 q^3+345 q^2+250 q-109-89 q^{-1} -128 q^{-2} +72 q^{-3} +77 q^{-4} -20 q^{-5} +3 q^{-6} -38 q^{-7} +12 q^{-8} +14 q^{-9} -9 q^{-10} +5 q^{-11} -6 q^{-12} +3 q^{-13} +2 q^{-14} -3 q^{-15} + q^{-16} </math>|J5=<math>-q^{110}+3 q^{109}-q^{108}-5 q^{107}+3 q^{106}+3 q^{105}+q^{104}+7 q^{103}-6 q^{102}-30 q^{101}-8 q^{100}+29 q^{99}+47 q^{98}+52 q^{97}-20 q^{96}-132 q^{95}-159 q^{94}-11 q^{93}+211 q^{92}+349 q^{91}+212 q^{90}-236 q^{89}-649 q^{88}-610 q^{87}+50 q^{86}+918 q^{85}+1245 q^{84}+513 q^{83}-945 q^{82}-2007 q^{81}-1554 q^{80}+511 q^{79}+2637 q^{78}+2919 q^{77}+657 q^{76}-2779 q^{75}-4485 q^{74}-2468 q^{73}+2201 q^{72}+5738 q^{71}+4783 q^{70}-680 q^{69}-6469 q^{68}-7254 q^{67}-1549 q^{66}+6351 q^{65}+9482 q^{64}+4321 q^{63}-5428 q^{62}-11228 q^{61}-7211 q^{60}+3854 q^{59}+12318 q^{58}+9944 q^{57}-1903 q^{56}-12793 q^{55}-12309 q^{54}-134 q^{53}+12791 q^{52}+14176 q^{51}+2110 q^{50}-12498 q^{49}-15624 q^{48}-3802 q^{47}+11986 q^{46}+16645 q^{45}+5371 q^{44}-11403 q^{43}-17433 q^{42}-6638 q^{41}+10627 q^{40}+17843 q^{39}+7990 q^{38}-9684 q^{37}-18085 q^{36}-9117 q^{35}+8360 q^{34}+17780 q^{33}+10381 q^{32}-6663 q^{31}-17086 q^{30}-11311 q^{29}+4551 q^{28}+15589 q^{27}+12021 q^{26}-2183 q^{25}-13495 q^{24}-12040 q^{23}-208 q^{22}+10743 q^{21}+11390 q^{20}+2243 q^{19}-7720 q^{18}-9909 q^{17}-3653 q^{16}+4709 q^{15}+7949 q^{14}+4195 q^{13}-2223 q^{12}-5645 q^{11}-3988 q^{10}+414 q^9+3563 q^8+3232 q^7+517 q^6-1862 q^5-2242 q^4-849 q^3+768 q^2+1346 q+749-192 q^{-1} -679 q^{-2} -506 q^{-3} -28 q^{-4} +280 q^{-5} +281 q^{-6} +78 q^{-7} -109 q^{-8} -129 q^{-9} -39 q^{-10} +25 q^{-11} +41 q^{-12} +35 q^{-13} -11 q^{-14} -25 q^{-15} +2 q^{-16} +3 q^{-17} -3 q^{-18} +6 q^{-19} + q^{-20} -6 q^{-21} +3 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} </math>|J6=Not Available|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{74}-3 q^{73}+q^{72}+5 q^{71}-3 q^{70}+2 q^{69}-19 q^{68}+4 q^{67}+35 q^{66}+5 q^{65}+6 q^{64}-100 q^{63}-38 q^{62}+108 q^{61}+105 q^{60}+116 q^{59}-260 q^{58}-268 q^{57}+55 q^{56}+286 q^{55}+546 q^{54}-254 q^{53}-651 q^{52}-380 q^{51}+228 q^{50}+1217 q^{49}+209 q^{48}-799 q^{47}-1105 q^{46}-348 q^{45}+1710 q^{44}+1002 q^{43}-452 q^{42}-1713 q^{41}-1256 q^{40}+1765 q^{39}+1727 q^{38}+220 q^{37}-1981 q^{36}-2105 q^{35}+1508 q^{34}+2169 q^{33}+889 q^{32}-1969 q^{31}-2683 q^{30}+1123 q^{29}+2332 q^{28}+1419 q^{27}-1747 q^{26}-2957 q^{25}+634 q^{24}+2205 q^{23}+1798 q^{22}-1260 q^{21}-2863 q^{20}+26 q^{19}+1701 q^{18}+1925 q^{17}-533 q^{16}-2296 q^{15}-489 q^{14}+881 q^{13}+1614 q^{12}+137 q^{11}-1364 q^{10}-612 q^9+132 q^8+950 q^7+384 q^6-521 q^5-358 q^4-174 q^3+345 q^2+250 q-109-89 q^{-1} -128 q^{-2} +72 q^{-3} +77 q^{-4} -20 q^{-5} +3 q^{-6} -38 q^{-7} +12 q^{-8} +14 q^{-9} -9 q^{-10} +5 q^{-11} -6 q^{-12} +3 q^{-13} +2 q^{-14} -3 q^{-15} + q^{-16} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+3 q^{109}-q^{108}-5 q^{107}+3 q^{106}+3 q^{105}+q^{104}+7 q^{103}-6 q^{102}-30 q^{101}-8 q^{100}+29 q^{99}+47 q^{98}+52 q^{97}-20 q^{96}-132 q^{95}-159 q^{94}-11 q^{93}+211 q^{92}+349 q^{91}+212 q^{90}-236 q^{89}-649 q^{88}-610 q^{87}+50 q^{86}+918 q^{85}+1245 q^{84}+513 q^{83}-945 q^{82}-2007 q^{81}-1554 q^{80}+511 q^{79}+2637 q^{78}+2919 q^{77}+657 q^{76}-2779 q^{75}-4485 q^{74}-2468 q^{73}+2201 q^{72}+5738 q^{71}+4783 q^{70}-680 q^{69}-6469 q^{68}-7254 q^{67}-1549 q^{66}+6351 q^{65}+9482 q^{64}+4321 q^{63}-5428 q^{62}-11228 q^{61}-7211 q^{60}+3854 q^{59}+12318 q^{58}+9944 q^{57}-1903 q^{56}-12793 q^{55}-12309 q^{54}-134 q^{53}+12791 q^{52}+14176 q^{51}+2110 q^{50}-12498 q^{49}-15624 q^{48}-3802 q^{47}+11986 q^{46}+16645 q^{45}+5371 q^{44}-11403 q^{43}-17433 q^{42}-6638 q^{41}+10627 q^{40}+17843 q^{39}+7990 q^{38}-9684 q^{37}-18085 q^{36}-9117 q^{35}+8360 q^{34}+17780 q^{33}+10381 q^{32}-6663 q^{31}-17086 q^{30}-11311 q^{29}+4551 q^{28}+15589 q^{27}+12021 q^{26}-2183 q^{25}-13495 q^{24}-12040 q^{23}-208 q^{22}+10743 q^{21}+11390 q^{20}+2243 q^{19}-7720 q^{18}-9909 q^{17}-3653 q^{16}+4709 q^{15}+7949 q^{14}+4195 q^{13}-2223 q^{12}-5645 q^{11}-3988 q^{10}+414 q^9+3563 q^8+3232 q^7+517 q^6-1862 q^5-2242 q^4-849 q^3+768 q^2+1346 q+749-192 q^{-1} -679 q^{-2} -506 q^{-3} -28 q^{-4} +280 q^{-5} +281 q^{-6} +78 q^{-7} -109 q^{-8} -129 q^{-9} -39 q^{-10} +25 q^{-11} +41 q^{-12} +35 q^{-13} -11 q^{-14} -25 q^{-15} +2 q^{-16} +3 q^{-17} -3 q^{-18} +6 q^{-19} + q^{-20} -6 q^{-21} +3 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 39]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 39]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 11, 4, 10], X[7, 18, 8, 1], X[17, 13, 18, 12], |
|||
X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2], |
X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2], |
||
X[13, 9, 14, 8]]</nowiki></pre></td></tr> |
X[13, 9, 14, 8]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 39]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 39]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 14, 18, 16, 2, 8, 4, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 39]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, -3, -2, 1, 4, 3, -2, 3, 4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 39]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 39]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_39_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 39]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 39]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 14 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 39]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_39_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 39]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 39]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 14 2 |
|||
-21 - -- + -- + 14 t - 3 t |
-21 - -- + -- + 14 t - 3 t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 39]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + 2 z - 3 z</nowiki></pre></td></tr> |
1 + 2 z - 3 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 162]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 39]], KnotSignature[Knot[9, 39]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{55, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 39]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 39]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 |
|||
-3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q |
-3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 11], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 11], |
|||
Knot[11, NonAlternating, 112]}</nowiki></pre></td></tr> |
Knot[11, NonAlternating, 112]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 39]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -2 2 4 6 8 10 12 14 16 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -2 2 4 6 8 10 12 14 16 |
|||
-1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q - |
-1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q - |
||
20 22 24 26 |
20 22 24 26 |
||
q + 2 q - q - q</nowiki></pre></td></tr> |
q + 2 q - q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 39]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 |
|||
-8 2 2 2 2 3 z 3 z z 2 z z |
-8 2 2 2 2 3 z 3 z z 2 z z |
||
-a + -- - -- + -- + z + ---- - ---- + -- - ---- - -- |
-a + -- - -- + -- + z + ---- - ---- + -- - ---- - -- |
||
6 4 2 6 4 2 4 2 |
6 4 2 6 4 2 4 2 |
||
a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 39]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
-8 2 2 2 z z 3 z z 2 3 z 9 z 12 z |
-8 2 2 2 z z 3 z z 2 3 z 9 z 12 z |
||
-a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- + |
-a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- + |
||
Line 177: | Line 126: | ||
2 7 5 3 6 4 |
2 7 5 3 6 4 |
||
a a a a a a</nowiki></pre></td></tr> |
a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 39]], Vassiliev[3][Knot[9, 39]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 39]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 q 3 5 5 2 7 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 39]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 q 3 5 5 2 7 2 |
|||
4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t + |
4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t + |
||
3 2 q t t |
3 2 q t t |
||
Line 192: | Line 139: | ||
13 6 15 6 17 7 |
13 6 15 6 17 7 |
||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 39], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 2 7 2 3 4 5 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 2 7 2 3 4 5 6 |
|||
-17 + q - -- + -- + - + 7 q + 28 q - 45 q + 4 q + 62 q - 68 q - |
-17 + q - -- + -- + - + 7 q + 28 q - 45 q + 4 q + 62 q - 68 q - |
||
3 2 q |
3 2 q |
||
Line 204: | Line 150: | ||
15 16 17 18 19 20 21 22 23 |
15 16 17 18 19 20 21 22 23 |
||
27 q - 30 q + 37 q - 5 q - 16 q + 10 q + q - 3 q + q</nowiki></pre></td></tr> |
27 q - 30 q + 37 q - 5 q - 16 q + 10 q + q - 3 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:41, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
Gauss code | -1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3 |
Dowker-Thistlethwaite code | 6 10 14 18 16 2 8 4 12 |
Conway Notation | [2:2:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{11, 6}, {2, 7}, {6, 1}, {8, 3}, {5, 2}, {7, 9}, {4, 8}, {10, 5}, {9, 11}, {3, 10}, {1, 4}] |
[edit Notes on presentations of 9 39]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 16 2 8 4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 6}, {2, 7}, {6, 1}, {8, 3}, {5, 2}, {7, 9}, {4, 8}, {10, 5}, {9, 11}, {3, 10}, {1, 4}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 55, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n162,}
Same Jones Polynomial (up to mirroring, ): {K11n11, K11n112,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n162,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n11, K11n112,} |
Vassiliev invariants
V2 and V3: | (2, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|