K11n179: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
(No difference)

Revision as of 13:02, 30 August 2005

K11n178.gif

K11n178

K11n180.gif

K11n180

K11n179.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n179 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X3,10,4,11 X5,20,6,21 X14,8,15,7 X9,2,10,3 X11,19,12,18 X8,14,9,13 X22,16,1,15 X17,13,18,12 X19,4,20,5 X16,22,17,21
Gauss code 1, 5, -2, 10, -3, -1, 4, -7, -5, 2, -6, 9, 7, -4, 8, -11, -9, 6, -10, 3, 11, -8
Dowker-Thistlethwaite code 6 -10 -20 14 -2 -18 8 22 -12 -4 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n179 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n179/ThurstonBennequinNumber
Hyperbolic Volume 14.7989
A-Polynomial See Data:K11n179/A-polynomial

[edit Notes for K11n179's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n179's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 77, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n179/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n179/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_71, K11n156,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n179. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
11         2-2
9        3 3
7       52 -3
5      73  4
3     65   -1
1    77    0
-1   57     2
-3  36      -3
-5 15       4
-7 3        -3
-91         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n178.gif

K11n178

K11n180.gif

K11n180