|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>q^{54}-2 q^{53}+q^{52}+q^{50}-3 q^{49}+3 q^{48}-3 q^{46}-3 q^{45}+12 q^{44}+2 q^{43}-20 q^{42}-10 q^{41}+37 q^{40}+24 q^{39}-56 q^{38}-44 q^{37}+67 q^{36}+82 q^{35}-87 q^{34}-109 q^{33}+84 q^{32}+147 q^{31}-85 q^{30}-167 q^{29}+67 q^{28}+188 q^{27}-53 q^{26}-188 q^{25}+26 q^{24}+186 q^{23}-q^{22}-174 q^{21}-25 q^{20}+153 q^{19}+55 q^{18}-134 q^{17}-68 q^{16}+96 q^{15}+90 q^{14}-74 q^{13}-84 q^{12}+34 q^{11}+85 q^{10}-17 q^9-61 q^8-9 q^7+51 q^6+9 q^5-26 q^4-15 q^3+17 q^2+9 q-6-7 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
|
coloured_jones_3 = <math>q^{54}-2 q^{53}+q^{52}+q^{50}-3 q^{49}+3 q^{48}-3 q^{46}-3 q^{45}+12 q^{44}+2 q^{43}-20 q^{42}-10 q^{41}+37 q^{40}+24 q^{39}-56 q^{38}-44 q^{37}+67 q^{36}+82 q^{35}-87 q^{34}-109 q^{33}+84 q^{32}+147 q^{31}-85 q^{30}-167 q^{29}+67 q^{28}+188 q^{27}-53 q^{26}-188 q^{25}+26 q^{24}+186 q^{23}-q^{22}-174 q^{21}-25 q^{20}+153 q^{19}+55 q^{18}-134 q^{17}-68 q^{16}+96 q^{15}+90 q^{14}-74 q^{13}-84 q^{12}+34 q^{11}+85 q^{10}-17 q^9-61 q^8-9 q^7+51 q^6+9 q^5-26 q^4-15 q^3+17 q^2+9 q-6-7 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
|
coloured_jones_4 = <math>q^{88}-2 q^{87}+q^{86}-2 q^{84}+6 q^{83}-6 q^{82}+3 q^{81}-2 q^{80}-8 q^{79}+21 q^{78}-11 q^{77}+3 q^{76}-11 q^{75}-24 q^{74}+54 q^{73}-2 q^{72}+10 q^{71}-46 q^{70}-82 q^{69}+95 q^{68}+52 q^{67}+81 q^{66}-90 q^{65}-243 q^{64}+65 q^{63}+137 q^{62}+295 q^{61}-46 q^{60}-487 q^{59}-117 q^{58}+138 q^{57}+610 q^{56}+167 q^{55}-674 q^{54}-396 q^{53}-13 q^{52}+857 q^{51}+460 q^{50}-697 q^{49}-600 q^{48}-246 q^{47}+925 q^{46}+679 q^{45}-591 q^{44}-645 q^{43}-442 q^{42}+840 q^{41}+759 q^{40}-425 q^{39}-562 q^{38}-574 q^{37}+655 q^{36}+743 q^{35}-219 q^{34}-402 q^{33}-659 q^{32}+393 q^{31}+646 q^{30}+14 q^{29}-172 q^{28}-671 q^{27}+94 q^{26}+448 q^{25}+189 q^{24}+92 q^{23}-543 q^{22}-133 q^{21}+174 q^{20}+204 q^{19}+279 q^{18}-298 q^{17}-184 q^{16}-44 q^{15}+80 q^{14}+286 q^{13}-77 q^{12}-93 q^{11}-106 q^{10}-35 q^9+169 q^8+10 q^7-3 q^6-60 q^5-56 q^4+62 q^3+9 q^2+19 q-16-29 q^{-1} +18 q^{-2} - q^{-3} +9 q^{-4} -2 q^{-5} -9 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
|
coloured_jones_4 = <math>q^{88}-2 q^{87}+q^{86}-2 q^{84}+6 q^{83}-6 q^{82}+3 q^{81}-2 q^{80}-8 q^{79}+21 q^{78}-11 q^{77}+3 q^{76}-11 q^{75}-24 q^{74}+54 q^{73}-2 q^{72}+10 q^{71}-46 q^{70}-82 q^{69}+95 q^{68}+52 q^{67}+81 q^{66}-90 q^{65}-243 q^{64}+65 q^{63}+137 q^{62}+295 q^{61}-46 q^{60}-487 q^{59}-117 q^{58}+138 q^{57}+610 q^{56}+167 q^{55}-674 q^{54}-396 q^{53}-13 q^{52}+857 q^{51}+460 q^{50}-697 q^{49}-600 q^{48}-246 q^{47}+925 q^{46}+679 q^{45}-591 q^{44}-645 q^{43}-442 q^{42}+840 q^{41}+759 q^{40}-425 q^{39}-562 q^{38}-574 q^{37}+655 q^{36}+743 q^{35}-219 q^{34}-402 q^{33}-659 q^{32}+393 q^{31}+646 q^{30}+14 q^{29}-172 q^{28}-671 q^{27}+94 q^{26}+448 q^{25}+189 q^{24}+92 q^{23}-543 q^{22}-133 q^{21}+174 q^{20}+204 q^{19}+279 q^{18}-298 q^{17}-184 q^{16}-44 q^{15}+80 q^{14}+286 q^{13}-77 q^{12}-93 q^{11}-106 q^{10}-35 q^9+169 q^8+10 q^7-3 q^6-60 q^5-56 q^4+62 q^3+9 q^2+19 q-16-29 q^{-1} +18 q^{-2} - q^{-3} +9 q^{-4} -2 q^{-5} -9 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 50]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 50]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 50]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_50_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 50]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_50_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 50]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 50]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 50]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 50]][t]</nowiki></pre></td></tr> |