10 50: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 41: | Line 44: | ||
coloured_jones_3 = <math>q^{54}-2 q^{53}+q^{52}+q^{50}-3 q^{49}+3 q^{48}-3 q^{46}-3 q^{45}+12 q^{44}+2 q^{43}-20 q^{42}-10 q^{41}+37 q^{40}+24 q^{39}-56 q^{38}-44 q^{37}+67 q^{36}+82 q^{35}-87 q^{34}-109 q^{33}+84 q^{32}+147 q^{31}-85 q^{30}-167 q^{29}+67 q^{28}+188 q^{27}-53 q^{26}-188 q^{25}+26 q^{24}+186 q^{23}-q^{22}-174 q^{21}-25 q^{20}+153 q^{19}+55 q^{18}-134 q^{17}-68 q^{16}+96 q^{15}+90 q^{14}-74 q^{13}-84 q^{12}+34 q^{11}+85 q^{10}-17 q^9-61 q^8-9 q^7+51 q^6+9 q^5-26 q^4-15 q^3+17 q^2+9 q-6-7 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
coloured_jones_3 = <math>q^{54}-2 q^{53}+q^{52}+q^{50}-3 q^{49}+3 q^{48}-3 q^{46}-3 q^{45}+12 q^{44}+2 q^{43}-20 q^{42}-10 q^{41}+37 q^{40}+24 q^{39}-56 q^{38}-44 q^{37}+67 q^{36}+82 q^{35}-87 q^{34}-109 q^{33}+84 q^{32}+147 q^{31}-85 q^{30}-167 q^{29}+67 q^{28}+188 q^{27}-53 q^{26}-188 q^{25}+26 q^{24}+186 q^{23}-q^{22}-174 q^{21}-25 q^{20}+153 q^{19}+55 q^{18}-134 q^{17}-68 q^{16}+96 q^{15}+90 q^{14}-74 q^{13}-84 q^{12}+34 q^{11}+85 q^{10}-17 q^9-61 q^8-9 q^7+51 q^6+9 q^5-26 q^4-15 q^3+17 q^2+9 q-6-7 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
||
coloured_jones_4 = <math>q^{88}-2 q^{87}+q^{86}-2 q^{84}+6 q^{83}-6 q^{82}+3 q^{81}-2 q^{80}-8 q^{79}+21 q^{78}-11 q^{77}+3 q^{76}-11 q^{75}-24 q^{74}+54 q^{73}-2 q^{72}+10 q^{71}-46 q^{70}-82 q^{69}+95 q^{68}+52 q^{67}+81 q^{66}-90 q^{65}-243 q^{64}+65 q^{63}+137 q^{62}+295 q^{61}-46 q^{60}-487 q^{59}-117 q^{58}+138 q^{57}+610 q^{56}+167 q^{55}-674 q^{54}-396 q^{53}-13 q^{52}+857 q^{51}+460 q^{50}-697 q^{49}-600 q^{48}-246 q^{47}+925 q^{46}+679 q^{45}-591 q^{44}-645 q^{43}-442 q^{42}+840 q^{41}+759 q^{40}-425 q^{39}-562 q^{38}-574 q^{37}+655 q^{36}+743 q^{35}-219 q^{34}-402 q^{33}-659 q^{32}+393 q^{31}+646 q^{30}+14 q^{29}-172 q^{28}-671 q^{27}+94 q^{26}+448 q^{25}+189 q^{24}+92 q^{23}-543 q^{22}-133 q^{21}+174 q^{20}+204 q^{19}+279 q^{18}-298 q^{17}-184 q^{16}-44 q^{15}+80 q^{14}+286 q^{13}-77 q^{12}-93 q^{11}-106 q^{10}-35 q^9+169 q^8+10 q^7-3 q^6-60 q^5-56 q^4+62 q^3+9 q^2+19 q-16-29 q^{-1} +18 q^{-2} - q^{-3} +9 q^{-4} -2 q^{-5} -9 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
coloured_jones_4 = <math>q^{88}-2 q^{87}+q^{86}-2 q^{84}+6 q^{83}-6 q^{82}+3 q^{81}-2 q^{80}-8 q^{79}+21 q^{78}-11 q^{77}+3 q^{76}-11 q^{75}-24 q^{74}+54 q^{73}-2 q^{72}+10 q^{71}-46 q^{70}-82 q^{69}+95 q^{68}+52 q^{67}+81 q^{66}-90 q^{65}-243 q^{64}+65 q^{63}+137 q^{62}+295 q^{61}-46 q^{60}-487 q^{59}-117 q^{58}+138 q^{57}+610 q^{56}+167 q^{55}-674 q^{54}-396 q^{53}-13 q^{52}+857 q^{51}+460 q^{50}-697 q^{49}-600 q^{48}-246 q^{47}+925 q^{46}+679 q^{45}-591 q^{44}-645 q^{43}-442 q^{42}+840 q^{41}+759 q^{40}-425 q^{39}-562 q^{38}-574 q^{37}+655 q^{36}+743 q^{35}-219 q^{34}-402 q^{33}-659 q^{32}+393 q^{31}+646 q^{30}+14 q^{29}-172 q^{28}-671 q^{27}+94 q^{26}+448 q^{25}+189 q^{24}+92 q^{23}-543 q^{22}-133 q^{21}+174 q^{20}+204 q^{19}+279 q^{18}-298 q^{17}-184 q^{16}-44 q^{15}+80 q^{14}+286 q^{13}-77 q^{12}-93 q^{11}-106 q^{10}-35 q^9+169 q^8+10 q^7-3 q^6-60 q^5-56 q^4+62 q^3+9 q^2+19 q-16-29 q^{-1} +18 q^{-2} - q^{-3} +9 q^{-4} -2 q^{-5} -9 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 50: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 50]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 50]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], |
||
Line 70: | Line 73: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 50]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_50_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 50]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_50_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 50]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 50]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 50]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 50]][t]</nowiki></pre></td></tr> |
Revision as of 18:41, 31 August 2005
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 50's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X20,14,1,13 X10,20,11,19 X18,12,19,11 X12,18,13,17 |
Gauss code | 1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 9, -10, 7, -5, 6, -4, 10, -9, 8, -7 |
Dowker-Thistlethwaite code | 6 8 14 2 16 18 20 4 12 10 |
Conway Notation | [32,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{2, 12}, {1, 11}, {12, 10}, {11, 7}, {9, 4}, {10, 8}, {5, 3}, {4, 6}, {7, 5}, {6, 2}, {3, 9}, {8, 1}] |
[edit Notes on presentations of 10 50]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (-1, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 50. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|