9 48: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 38: Line 41:
coloured_jones_3 = <math>-2 q^{35}+q^{33}+9 q^{32}-5 q^{31}-12 q^{30}-q^{29}+27 q^{28}+5 q^{27}-37 q^{26}-19 q^{25}+49 q^{24}+32 q^{23}-58 q^{22}-50 q^{21}+61 q^{20}+68 q^{19}-67 q^{18}-74 q^{17}+58 q^{16}+92 q^{15}-62 q^{14}-86 q^{13}+47 q^{12}+94 q^{11}-44 q^{10}-83 q^9+26 q^8+79 q^7-15 q^6-67 q^5+2 q^4+53 q^3+8 q^2-37 q-12+22 q^{-1} +14 q^{-2} -13 q^{-3} -9 q^{-4} +4 q^{-5} +5 q^{-6} -3 q^{-8} + q^{-9} </math> |
coloured_jones_3 = <math>-2 q^{35}+q^{33}+9 q^{32}-5 q^{31}-12 q^{30}-q^{29}+27 q^{28}+5 q^{27}-37 q^{26}-19 q^{25}+49 q^{24}+32 q^{23}-58 q^{22}-50 q^{21}+61 q^{20}+68 q^{19}-67 q^{18}-74 q^{17}+58 q^{16}+92 q^{15}-62 q^{14}-86 q^{13}+47 q^{12}+94 q^{11}-44 q^{10}-83 q^9+26 q^8+79 q^7-15 q^6-67 q^5+2 q^4+53 q^3+8 q^2-37 q-12+22 q^{-1} +14 q^{-2} -13 q^{-3} -9 q^{-4} +4 q^{-5} +5 q^{-6} -3 q^{-8} + q^{-9} </math> |
coloured_jones_4 = <math>q^{58}+2 q^{57}-6 q^{55}-4 q^{54}-5 q^{53}+14 q^{52}+21 q^{51}-9 q^{50}-20 q^{49}-46 q^{48}+20 q^{47}+76 q^{46}+25 q^{45}-23 q^{44}-137 q^{43}-25 q^{42}+133 q^{41}+109 q^{40}+30 q^{39}-242 q^{38}-127 q^{37}+145 q^{36}+208 q^{35}+136 q^{34}-314 q^{33}-238 q^{32}+114 q^{31}+273 q^{30}+247 q^{29}-336 q^{28}-312 q^{27}+66 q^{26}+293 q^{25}+324 q^{24}-321 q^{23}-342 q^{22}+18 q^{21}+278 q^{20}+353 q^{19}-269 q^{18}-327 q^{17}-36 q^{16}+222 q^{15}+350 q^{14}-178 q^{13}-268 q^{12}-93 q^{11}+127 q^{10}+306 q^9-70 q^8-166 q^7-119 q^6+22 q^5+213 q^4+6 q^3-58 q^2-90 q-41+102 q^{-1} +24 q^{-2} +5 q^{-3} -39 q^{-4} -40 q^{-5} +31 q^{-6} +9 q^{-7} +14 q^{-8} -6 q^{-9} -16 q^{-10} +4 q^{-11} +5 q^{-13} -3 q^{-15} + q^{-16} </math> |
coloured_jones_4 = <math>q^{58}+2 q^{57}-6 q^{55}-4 q^{54}-5 q^{53}+14 q^{52}+21 q^{51}-9 q^{50}-20 q^{49}-46 q^{48}+20 q^{47}+76 q^{46}+25 q^{45}-23 q^{44}-137 q^{43}-25 q^{42}+133 q^{41}+109 q^{40}+30 q^{39}-242 q^{38}-127 q^{37}+145 q^{36}+208 q^{35}+136 q^{34}-314 q^{33}-238 q^{32}+114 q^{31}+273 q^{30}+247 q^{29}-336 q^{28}-312 q^{27}+66 q^{26}+293 q^{25}+324 q^{24}-321 q^{23}-342 q^{22}+18 q^{21}+278 q^{20}+353 q^{19}-269 q^{18}-327 q^{17}-36 q^{16}+222 q^{15}+350 q^{14}-178 q^{13}-268 q^{12}-93 q^{11}+127 q^{10}+306 q^9-70 q^8-166 q^7-119 q^6+22 q^5+213 q^4+6 q^3-58 q^2-90 q-41+102 q^{-1} +24 q^{-2} +5 q^{-3} -39 q^{-4} -40 q^{-5} +31 q^{-6} +9 q^{-7} +14 q^{-8} -6 q^{-9} -16 q^{-10} +4 q^{-11} +5 q^{-13} -3 q^{-15} + q^{-16} </math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 47: Line 50:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 48]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 48]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[12, 8, 13, 7], X[3, 11, 4, 10], X[11, 3, 12, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[12, 8, 13, 7], X[3, 11, 4, 10], X[11, 3, 12, 2],
Line 65: Line 68:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 48]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_48_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 48]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_48_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 48]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 48]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, {4, 6}, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, {4, 6}, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 48]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 48]][t]</nowiki></pre></td></tr>

Revision as of 17:42, 31 August 2005

9 47.gif

9_47

9 49.gif

9_49

9 48.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 48's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 48 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X12,8,13,7 X3,11,4,10 X11,3,12,2 X14,6,15,5 X6,14,7,13 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code -1, 4, -3, 1, 5, -6, 2, 9, -8, 3, -4, -2, 6, -5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 -14 -12 16 2 -6 18 8
Conway Notation [21,21,21-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 48 ML.gif 9 48 AP.gif
[{10, 4}, {5, 3}, {4, 7}, {2, 5}, {8, 6}, {7, 1}, {3, 8}, {9, 2}, {6, 10}, {1, 9}]

[edit Notes on presentations of 9 48]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-1][-8]
Hyperbolic Volume 9.53188
A-Polynomial See Data:9 48/A-polynomial

[edit Notes for 9 48's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 48's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n1,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (3, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 48. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
13       2-2
11      1 1
9     32 -1
7    31  2
5   13   2
3  33    0
1 12     1
-1 2      -2
-31       1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials