9 6: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 9 | |
n = 9 | |
||
Line 41: | Line 44: | ||
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} </math> | |
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} </math> | |
||
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} </math> | |
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} </math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 48: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 6]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 6]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], |
||
Line 66: | Line 69: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 6]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 6]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 6]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 6]][t]</nowiki></pre></td></tr> |
Revision as of 18:44, 31 August 2005
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3 |
Gauss code | -1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 10 6 8 |
Conway Notation | [522] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
![]() |
![]() [{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 1}] |
[edit Notes on presentations of 9 6]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (7, -18) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|