9 49: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 38: Line 41:
coloured_jones_3 = <math>-2 q^{50}+q^{48}+9 q^{47}-5 q^{46}-12 q^{45}-2 q^{44}+24 q^{43}+8 q^{42}-31 q^{41}-22 q^{40}+39 q^{39}+35 q^{38}-40 q^{37}-51 q^{36}+40 q^{35}+65 q^{34}-40 q^{33}-72 q^{32}+33 q^{31}+80 q^{30}-33 q^{29}-78 q^{28}+22 q^{27}+80 q^{26}-18 q^{25}-70 q^{24}+5 q^{23}+64 q^{22}+2 q^{21}-48 q^{20}-14 q^{19}+39 q^{18}+14 q^{17}-21 q^{16}-18 q^{15}+12 q^{14}+13 q^{13}-3 q^{12}-8 q^{11}+q^{10}+3 q^9+q^8-2 q^7+q^6</math> |
coloured_jones_3 = <math>-2 q^{50}+q^{48}+9 q^{47}-5 q^{46}-12 q^{45}-2 q^{44}+24 q^{43}+8 q^{42}-31 q^{41}-22 q^{40}+39 q^{39}+35 q^{38}-40 q^{37}-51 q^{36}+40 q^{35}+65 q^{34}-40 q^{33}-72 q^{32}+33 q^{31}+80 q^{30}-33 q^{29}-78 q^{28}+22 q^{27}+80 q^{26}-18 q^{25}-70 q^{24}+5 q^{23}+64 q^{22}+2 q^{21}-48 q^{20}-14 q^{19}+39 q^{18}+14 q^{17}-21 q^{16}-18 q^{15}+12 q^{14}+13 q^{13}-3 q^{12}-8 q^{11}+q^{10}+3 q^9+q^8-2 q^7+q^6</math> |
coloured_jones_4 = <math>q^{82}+2 q^{81}-6 q^{79}-4 q^{78}-5 q^{77}+14 q^{76}+21 q^{75}-7 q^{74}-18 q^{73}-45 q^{72}+12 q^{71}+65 q^{70}+31 q^{69}-5 q^{68}-120 q^{67}-46 q^{66}+90 q^{65}+105 q^{64}+70 q^{63}-180 q^{62}-142 q^{61}+59 q^{60}+168 q^{59}+182 q^{58}-196 q^{57}-226 q^{56}-q^{55}+192 q^{54}+274 q^{53}-183 q^{52}-269 q^{51}-52 q^{50}+187 q^{49}+324 q^{48}-158 q^{47}-276 q^{46}-86 q^{45}+162 q^{44}+333 q^{43}-116 q^{42}-248 q^{41}-117 q^{40}+110 q^{39}+309 q^{38}-50 q^{37}-181 q^{36}-137 q^{35}+31 q^{34}+240 q^{33}+19 q^{32}-84 q^{31}-122 q^{30}-43 q^{29}+137 q^{28}+46 q^{27}+q^{26}-65 q^{25}-63 q^{24}+44 q^{23}+25 q^{22}+30 q^{21}-13 q^{20}-35 q^{19}+5 q^{18}+15 q^{16}+3 q^{15}-9 q^{14}+q^{13}-2 q^{12}+3 q^{11}+q^{10}-2 q^9+q^8</math> |
coloured_jones_4 = <math>q^{82}+2 q^{81}-6 q^{79}-4 q^{78}-5 q^{77}+14 q^{76}+21 q^{75}-7 q^{74}-18 q^{73}-45 q^{72}+12 q^{71}+65 q^{70}+31 q^{69}-5 q^{68}-120 q^{67}-46 q^{66}+90 q^{65}+105 q^{64}+70 q^{63}-180 q^{62}-142 q^{61}+59 q^{60}+168 q^{59}+182 q^{58}-196 q^{57}-226 q^{56}-q^{55}+192 q^{54}+274 q^{53}-183 q^{52}-269 q^{51}-52 q^{50}+187 q^{49}+324 q^{48}-158 q^{47}-276 q^{46}-86 q^{45}+162 q^{44}+333 q^{43}-116 q^{42}-248 q^{41}-117 q^{40}+110 q^{39}+309 q^{38}-50 q^{37}-181 q^{36}-137 q^{35}+31 q^{34}+240 q^{33}+19 q^{32}-84 q^{31}-122 q^{30}-43 q^{29}+137 q^{28}+46 q^{27}+q^{26}-65 q^{25}-63 q^{24}+44 q^{23}+25 q^{22}+30 q^{21}-13 q^{20}-35 q^{19}+5 q^{18}+15 q^{16}+3 q^{15}-9 q^{14}+q^{13}-2 q^{12}+3 q^{11}+q^{10}-2 q^9+q^8</math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 47: Line 50:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 49]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 49]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[12, 8, 13, 7], X[5, 15, 6, 14], X[3, 11, 4, 10],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[12, 8, 13, 7], X[5, 15, 6, 14], X[3, 11, 4, 10],
Line 65: Line 68:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 49]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_49_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 49]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_49_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 49]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 49]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 2, 3, {4, 5}, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 2, 3, {4, 5}, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 49]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 49]][t]</nowiki></pre></td></tr>

Revision as of 17:45, 31 August 2005

9 48.gif

9_48

10 1.gif

10_1

9 49.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 49's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 49 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X12,8,13,7 X5,15,6,14 X3,11,4,10 X11,3,12,2 X15,5,16,4 X17,9,18,8 X9,17,10,16 X18,14,1,13
Gauss code 1, 5, -4, 6, -3, -1, 2, 7, -8, 4, -5, -2, 9, 3, -6, 8, -7, -9
Dowker-Thistlethwaite code 6 -10 -14 12 -16 -2 18 -4 -8
Conway Notation [-20:-20:-20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

9 49 ML.gif 9 49 AP.gif
[{2, 7}, {1, 5}, {8, 3}, {7, 9}, {6, 2}, {4, 1}, {5, 8}, {3, 6}, {9, 4}]

[edit Notes on presentations of 9 49]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [3][-12]
Hyperbolic Volume 9.42707
A-Polynomial See Data:9 49/A-polynomial

[edit Notes for 9 49's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 49's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, 14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 49. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567χ
19       2-2
17      1 1
15     32 -1
13    21  1
11   23   1
9  22    0
7  2     2
512      -1
31       1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials