|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_2 = <math>q^9-3 q^8+2 q^7+4 q^6-12 q^5+12 q^4+6 q^3-30 q^2+28 q+12-51 q^{-1} +38 q^{-2} +24 q^{-3} -64 q^{-4} +34 q^{-5} +36 q^{-6} -64 q^{-7} +19 q^{-8} +41 q^{-9} -49 q^{-10} +3 q^{-11} +36 q^{-12} -27 q^{-13} -6 q^{-14} +21 q^{-15} -9 q^{-16} -6 q^{-17} +7 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} </math> | |
|
coloured_jones_2 = <math>q^9-3 q^8+2 q^7+4 q^6-12 q^5+12 q^4+6 q^3-30 q^2+28 q+12-51 q^{-1} +38 q^{-2} +24 q^{-3} -64 q^{-4} +34 q^{-5} +36 q^{-6} -64 q^{-7} +19 q^{-8} +41 q^{-9} -49 q^{-10} +3 q^{-11} +36 q^{-12} -27 q^{-13} -6 q^{-14} +21 q^{-15} -9 q^{-16} -6 q^{-17} +7 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} </math> | |
|
coloured_jones_3 = <math>-q^{18}+3 q^{17}-2 q^{16}-q^{15}+3 q^{13}-3 q^{12}-2 q^{11}+10 q^{10}-6 q^9-16 q^8+13 q^7+34 q^6-32 q^5-52 q^4+43 q^3+88 q^2-62 q-114+60 q^{-1} +153 q^{-2} -57 q^{-3} -174 q^{-4} +34 q^{-5} +192 q^{-6} -10 q^{-7} -191 q^{-8} -25 q^{-9} +185 q^{-10} +54 q^{-11} -163 q^{-12} -87 q^{-13} +144 q^{-14} +104 q^{-15} -108 q^{-16} -127 q^{-17} +80 q^{-18} +130 q^{-19} -41 q^{-20} -132 q^{-21} +11 q^{-22} +115 q^{-23} +22 q^{-24} -96 q^{-25} -40 q^{-26} +69 q^{-27} +47 q^{-28} -39 q^{-29} -47 q^{-30} +19 q^{-31} +34 q^{-32} -2 q^{-33} -24 q^{-34} -2 q^{-35} +11 q^{-36} +5 q^{-37} -6 q^{-38} -2 q^{-39} + q^{-40} +2 q^{-41} - q^{-42} </math> | |
|
coloured_jones_3 = <math>-q^{18}+3 q^{17}-2 q^{16}-q^{15}+3 q^{13}-3 q^{12}-2 q^{11}+10 q^{10}-6 q^9-16 q^8+13 q^7+34 q^6-32 q^5-52 q^4+43 q^3+88 q^2-62 q-114+60 q^{-1} +153 q^{-2} -57 q^{-3} -174 q^{-4} +34 q^{-5} +192 q^{-6} -10 q^{-7} -191 q^{-8} -25 q^{-9} +185 q^{-10} +54 q^{-11} -163 q^{-12} -87 q^{-13} +144 q^{-14} +104 q^{-15} -108 q^{-16} -127 q^{-17} +80 q^{-18} +130 q^{-19} -41 q^{-20} -132 q^{-21} +11 q^{-22} +115 q^{-23} +22 q^{-24} -96 q^{-25} -40 q^{-26} +69 q^{-27} +47 q^{-28} -39 q^{-29} -47 q^{-30} +19 q^{-31} +34 q^{-32} -2 q^{-33} -24 q^{-34} -2 q^{-35} +11 q^{-36} +5 q^{-37} -6 q^{-38} -2 q^{-39} + q^{-40} +2 q^{-41} - q^{-42} </math> | |
|
coloured_jones_4 = | |
|
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 68]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 68]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[16, 5, 17, 6], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[16, 5, 17, 6], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 68]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_68_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 68]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_68_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 68]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 68]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 68]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 68]][t]</nowiki></pre></td></tr> |