Invariants from Braid Theory: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
<!--$$?BraidLength$$-->
<!--$$?BraidLength$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=1|s=BraidLength}}
n = 1 |
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.
in = <nowiki>BraidLength</nowiki> |
{{Help2}}
out= <nowiki>BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.</nowiki>}}
<!--END-->
<!--END-->


Line 16: Line 17:
<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=2}}
{{InOut|
n = 2 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}</nowiki></pre>
in = <nowiki>K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}</nowiki> |
{{InOut2|n=2}}<pre style="border: 0px; padding: 0em"><nowiki>{11, 11}</nowiki></pre>
out= <nowiki>{11, 11}</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 26: Line 27:
<!--$$?BraidIndex$$-->
<!--$$?BraidIndex$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout1|n=3|s=BraidIndex}}
n = 3 |
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
n1 = 4 |
{{HelpAndAbout2|n=4|s=BraidIndex}}
in = <nowiki>BraidIndex</nowiki> |
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
out= <nowiki>BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.</nowiki> |
{{HelpAndAbout3}}
about= <nowiki>The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
<!--END-->
<!--END-->


Line 37: Line 39:
<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=5}}
{{InOut|
n = 5 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}</nowiki></pre>
in = <nowiki>K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}</nowiki> |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>{4, 5}</nowiki></pre>
out= <nowiki>{4, 5}</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics1|n=6}}
n = 7 |
Show[BraidPlot[BR[K]]]
in = <nowiki>Show[BraidPlot[BR[K]]]</nowiki> |
{{Graphics2|n=6|imagename=Invariants_from_Braid_Theory_Out_6.gif}}
img= Invariants_from_Braid_Theory_Out_6.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->

Revision as of 12:11, 30 August 2005


The braid length of a knot or a link is the smallest number of crossings in a braid whose closure is . KnotTheory` has some braid lengths preloaded:

(For In[1] see Setup)

In[1]:= ?BraidLength
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.

Note that the braid length of is simply the length of the minimum braid representing (see Braid Representatives):

In[2]:= K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}
Out[2]= {11, 11}

The braid index of a knot or a link is the smallest number of strands in a braid whose closure is . KnotTheory` has some braid indices preloaded:

In[3]:= ?BraidIndex
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
In[4]:= BraidIndex::about
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Of the 250 knots with up to 10 crossings, only 10_136 has braid index smaller than the width of its minimum braid:

In[5]:= K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}
Out[5]= {4, 5}
In[7]:= Show[BraidPlot[BR[K]]]
Invariants from Braid Theory Out 6.gif
Out[7]= -Graphics-