8 5: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->

{{Rolfsen Knot Page|
<!-- provide an anchor so we can return to the top of the page -->
n = 8 |
<span id="top"></span>
k = 5 |

KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-6,5,-1,3,-2,4,-8,7,-5,6,-4,8,-7/goTop.html |
<!-- this relies on transclusion for next and previous links -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
{| align=left
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
|- valign=top
</table> |
|[[Image:{{PAGENAME}}.gif]]
braid_crossings = 8 |
|{{Rolfsen Knot Site Links|n=8|k=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-6,5,-1,3,-2,4,-8,7,-5,6,-4,8,-7/goTop.html}}
braid_width = 3 |
|{{:{{PAGENAME}} Quick Notes}}
braid_index = 3 |
|}
same_alexander = [[10_141]], |

same_jones = |
<br style="clear:both" />
khovanov_table = <table border=1>

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=7.69231%>6</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=7.69231%>6</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 46: Line 37:
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table> |
coloured_jones_2 = <math>q^{22}-2 q^{21}+q^{20}+2 q^{19}-6 q^{18}+5 q^{17}+3 q^{16}-10 q^{15}+7 q^{14}+5 q^{13}-12 q^{12}+6 q^{11}+7 q^{10}-12 q^9+3 q^8+8 q^7-9 q^6+7 q^4-5 q^3-q^2+4 q-1- q^{-1} + q^{-2} </math> |

coloured_jones_3 = <math>q^{42}-2 q^{41}+q^{40}-q^{37}+2 q^{36}-4 q^{34}+2 q^{33}+7 q^{32}-4 q^{31}-11 q^{30}+6 q^{29}+13 q^{28}-4 q^{27}-17 q^{26}+5 q^{25}+15 q^{24}-17 q^{22}-q^{21}+13 q^{20}+6 q^{19}-12 q^{18}-8 q^{17}+10 q^{16}+9 q^{15}-6 q^{14}-13 q^{13}+6 q^{12}+11 q^{11}-14 q^9+q^8+9 q^7+6 q^6-11 q^5-4 q^4+5 q^3+7 q^2-4 q-4+4 q^{-2} - q^{-4} - q^{-5} + q^{-6} </math> |
{{Computer Talk Header}}
coloured_jones_4 = <math>q^{68}-2 q^{67}+q^{66}-2 q^{64}+5 q^{63}-4 q^{62}+2 q^{61}-3 q^{60}-3 q^{59}+14 q^{58}-7 q^{57}-2 q^{56}-10 q^{55}-3 q^{54}+32 q^{53}-3 q^{52}-12 q^{51}-29 q^{50}-7 q^{49}+56 q^{48}+9 q^{47}-15 q^{46}-49 q^{45}-20 q^{44}+68 q^{43}+21 q^{42}-7 q^{41}-55 q^{40}-33 q^{39}+65 q^{38}+21 q^{37}+4 q^{36}-44 q^{35}-38 q^{34}+54 q^{33}+12 q^{32}+12 q^{31}-30 q^{30}-37 q^{29}+40 q^{28}+3 q^{27}+20 q^{26}-17 q^{25}-36 q^{24}+25 q^{23}-4 q^{22}+27 q^{21}-4 q^{20}-32 q^{19}+11 q^{18}-14 q^{17}+28 q^{16}+11 q^{15}-21 q^{14}+q^{13}-23 q^{12}+18 q^{11}+18 q^{10}-4 q^9+3 q^8-26 q^7+2 q^6+12 q^5+6 q^4+10 q^3-17 q^2-6 q+1+4 q^{-1} +11 q^{-2} -5 q^{-3} -3 q^{-4} -3 q^{-5} - q^{-6} +5 q^{-7} - q^{-10} - q^{-11} + q^{-12} </math> |

coloured_jones_5 = <math>q^{100}-2 q^{99}+q^{98}-2 q^{96}+3 q^{95}+2 q^{94}-4 q^{93}-q^{92}+q^{91}+6 q^{89}+q^{88}-11 q^{87}-8 q^{86}+8 q^{85}+16 q^{84}+13 q^{83}-12 q^{82}-33 q^{81}-23 q^{80}+22 q^{79}+55 q^{78}+36 q^{77}-29 q^{76}-80 q^{75}-58 q^{74}+29 q^{73}+108 q^{72}+87 q^{71}-28 q^{70}-126 q^{69}-115 q^{68}+11 q^{67}+143 q^{66}+138 q^{65}+4 q^{64}-139 q^{63}-157 q^{62}-23 q^{61}+137 q^{60}+158 q^{59}+35 q^{58}-117 q^{57}-160 q^{56}-45 q^{55}+111 q^{54}+143 q^{53}+45 q^{52}-88 q^{51}-137 q^{50}-48 q^{49}+83 q^{48}+120 q^{47}+45 q^{46}-65 q^{45}-111 q^{44}-49 q^{43}+55 q^{42}+101 q^{41}+51 q^{40}-41 q^{39}-88 q^{38}-55 q^{37}+21 q^{36}+80 q^{35}+60 q^{34}-8 q^{33}-59 q^{32}-61 q^{31}-17 q^{30}+46 q^{29}+61 q^{28}+23 q^{27}-19 q^{26}-49 q^{25}-45 q^{24}+5 q^{23}+39 q^{22}+35 q^{21}+21 q^{20}-15 q^{19}-44 q^{18}-26 q^{17}+3 q^{16}+18 q^{15}+36 q^{14}+20 q^{13}-15 q^{12}-26 q^{11}-19 q^{10}-12 q^9+17 q^8+28 q^7+13 q^6-2 q^5-14 q^4-24 q^3-7 q^2+9 q+15+13 q^{-1} +4 q^{-2} -13 q^{-3} -11 q^{-4} -5 q^{-5} + q^{-6} +8 q^{-7} +9 q^{-8} - q^{-9} -3 q^{-10} -3 q^{-11} -4 q^{-12} +4 q^{-14} + q^{-15} - q^{-18} - q^{-19} + q^{-20} </math> |
<table>
coloured_jones_6 = <math>q^{138}-2 q^{137}+q^{136}-2 q^{134}+3 q^{133}+2 q^{131}-7 q^{130}+3 q^{129}+4 q^{128}-5 q^{127}+5 q^{126}-2 q^{125}-3 q^{124}-11 q^{123}+15 q^{122}+16 q^{121}-9 q^{120}-3 q^{119}-19 q^{118}-19 q^{117}-5 q^{116}+55 q^{115}+52 q^{114}-17 q^{113}-40 q^{112}-76 q^{111}-55 q^{110}+20 q^{109}+142 q^{108}+135 q^{107}-12 q^{106}-107 q^{105}-190 q^{104}-144 q^{103}+34 q^{102}+264 q^{101}+279 q^{100}+50 q^{99}-155 q^{98}-327 q^{97}-294 q^{96}-22 q^{95}+342 q^{94}+432 q^{93}+175 q^{92}-118 q^{91}-401 q^{90}-437 q^{89}-136 q^{88}+324 q^{87}+503 q^{86}+280 q^{85}-27 q^{84}-376 q^{83}-483 q^{82}-223 q^{81}+251 q^{80}+477 q^{79}+298 q^{78}+36 q^{77}-307 q^{76}-437 q^{75}-237 q^{74}+192 q^{73}+413 q^{72}+256 q^{71}+52 q^{70}-250 q^{69}-368 q^{68}-221 q^{67}+155 q^{66}+356 q^{65}+216 q^{64}+65 q^{63}-204 q^{62}-315 q^{61}-222 q^{60}+109 q^{59}+303 q^{58}+200 q^{57}+105 q^{56}-144 q^{55}-268 q^{54}-242 q^{53}+35 q^{52}+229 q^{51}+187 q^{50}+161 q^{49}-57 q^{48}-199 q^{47}-254 q^{46}-51 q^{45}+127 q^{44}+144 q^{43}+197 q^{42}+44 q^{41}-93 q^{40}-224 q^{39}-116 q^{38}+12 q^{37}+58 q^{36}+178 q^{35}+116 q^{34}+29 q^{33}-139 q^{32}-118 q^{31}-71 q^{30}-47 q^{29}+95 q^{28}+114 q^{27}+112 q^{26}-29 q^{25}-49 q^{24}-75 q^{23}-108 q^{22}-9 q^{21}+39 q^{20}+108 q^{19}+37 q^{18}+37 q^{17}-10 q^{16}-85 q^{15}-58 q^{14}-40 q^{13}+39 q^{12}+19 q^{11}+63 q^{10}+49 q^9-13 q^8-29 q^7-52 q^6-14 q^5-32 q^4+24 q^3+43 q^2+26 q+15-12 q^{-1} -8 q^{-2} -44 q^{-3} -12 q^{-4} +5 q^{-5} +13 q^{-6} +18 q^{-7} +12 q^{-8} +15 q^{-9} -19 q^{-10} -11 q^{-11} -9 q^{-12} -4 q^{-13} + q^{-14} +6 q^{-15} +14 q^{-16} -2 q^{-17} -3 q^{-19} -3 q^{-20} -4 q^{-21} - q^{-22} +5 q^{-23} + q^{-25} - q^{-28} - q^{-29} + q^{-30} </math> |
<tr valign=top>
coloured_jones_7 = <math>q^{182}-2 q^{181}+q^{180}-2 q^{178}+3 q^{177}-q^{174}-3 q^{173}+6 q^{172}-q^{171}-6 q^{170}+5 q^{169}-3 q^{168}+2 q^{166}+q^{165}+13 q^{164}-4 q^{163}-19 q^{162}-7 q^{161}-9 q^{160}+14 q^{159}+29 q^{158}+18 q^{157}+17 q^{156}-31 q^{155}-66 q^{154}-47 q^{153}-11 q^{152}+77 q^{151}+119 q^{150}+77 q^{149}+4 q^{148}-131 q^{147}-203 q^{146}-146 q^{145}+226 q^{143}+332 q^{142}+233 q^{141}+2 q^{140}-328 q^{139}-488 q^{138}-374 q^{137}-40 q^{136}+427 q^{135}+679 q^{134}+562 q^{133}+119 q^{132}-503 q^{131}-868 q^{130}-766 q^{129}-256 q^{128}+507 q^{127}+1020 q^{126}+996 q^{125}+439 q^{124}-466 q^{123}-1113 q^{122}-1177 q^{121}-631 q^{120}+349 q^{119}+1131 q^{118}+1308 q^{117}+807 q^{116}-211 q^{115}-1082 q^{114}-1363 q^{113}-937 q^{112}+85 q^{111}+999 q^{110}+1339 q^{109}+988 q^{108}+24 q^{107}-888 q^{106}-1286 q^{105}-999 q^{104}-69 q^{103}+815 q^{102}+1191 q^{101}+942 q^{100}+91 q^{99}-736 q^{98}-1108 q^{97}-900 q^{96}-79 q^{95}+707 q^{94}+1031 q^{93}+828 q^{92}+68 q^{91}-655 q^{90}-969 q^{89}-803 q^{88}-71 q^{87}+627 q^{86}+920 q^{85}+770 q^{84}+94 q^{83}-564 q^{82}-865 q^{81}-772 q^{80}-144 q^{79}+495 q^{78}+808 q^{77}+772 q^{76}+207 q^{75}-399 q^{74}-734 q^{73}-770 q^{72}-288 q^{71}+280 q^{70}+648 q^{69}+767 q^{68}+367 q^{67}-163 q^{66}-533 q^{65}-728 q^{64}-445 q^{63}+16 q^{62}+406 q^{61}+688 q^{60}+494 q^{59}+106 q^{58}-252 q^{57}-590 q^{56}-527 q^{55}-239 q^{54}+100 q^{53}+483 q^{52}+507 q^{51}+320 q^{50}+65 q^{49}-326 q^{48}-454 q^{47}-384 q^{46}-200 q^{45}+179 q^{44}+346 q^{43}+371 q^{42}+304 q^{41}-3 q^{40}-214 q^{39}-332 q^{38}-351 q^{37}-109 q^{36}+66 q^{35}+209 q^{34}+336 q^{33}+212 q^{32}+71 q^{31}-101 q^{30}-271 q^{29}-213 q^{28}-158 q^{27}-43 q^{26}+153 q^{25}+191 q^{24}+202 q^{23}+126 q^{22}-49 q^{21}-99 q^{20}-168 q^{19}-176 q^{18}-54 q^{17}+10 q^{16}+112 q^{15}+162 q^{14}+91 q^{13}+66 q^{12}-23 q^{11}-108 q^{10}-94 q^9-104 q^8-39 q^7+43 q^6+52 q^5+98 q^4+73 q^3+13 q^2-5 q-60-70 q^{-1} -41 q^{-2} -36 q^{-3} +22 q^{-4} +46 q^{-5} +35 q^{-6} +47 q^{-7} +15 q^{-8} -11 q^{-9} -21 q^{-10} -46 q^{-11} -23 q^{-12} -4 q^{-13} -2 q^{-14} +21 q^{-15} +22 q^{-16} +18 q^{-17} +14 q^{-18} -13 q^{-19} -12 q^{-20} -8 q^{-21} -13 q^{-22} -4 q^{-23} + q^{-24} +7 q^{-25} +13 q^{-26} + q^{-27} + q^{-29} -4 q^{-30} -3 q^{-31} -4 q^{-32} - q^{-33} +4 q^{-34} + q^{-35} + q^{-37} - q^{-40} - q^{-41} + q^{-42} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 5]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 5]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[14, 10, 15, 9],
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[14, 10, 15, 9],
X[12, 5, 13, 6], X[4, 13, 5, 14], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr>
X[12, 5, 13, 6], X[4, 13, 5, 14], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 5]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[8, 5]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, 1, -2}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 5]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 4 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 12, 2, 14, 16, 4, 10]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, 1, -2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 5]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_5_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 5]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 5]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 4 2 3
5 - t + -- - - - 4 t + 3 t - t
5 - t + -- - - - 4 t + 3 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 5]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 - z - 3 z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 5]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 5], Knot[10, 141]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 5]], KnotSignature[Knot[8, 5]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{21, 4}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 - z - 3 z - z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[8, 5]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8
<table><tr align=left>
1 - q + 3 q - 3 q + 3 q - 4 q + 3 q - 2 q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 5]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 5]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 12 14 16 20 24
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 5], Knot[10, 141]}</nowiki></code></td></tr>
</table>
1 + q + 2 q + 2 q - 3 q - q - q + q + q</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 5]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 5]], KnotSignature[Knot[8, 5]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{21, 4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 5]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8
1 - q + 3 q - 3 q + 3 q - 4 q + 3 q - 2 q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 5]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 5]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 12 14 16 20 24
1 + q + 2 q + 2 q - 3 q - q - q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 5]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6
2 5 4 3 z 8 z 4 z z 5 z z z
-- - -- + -- + ---- - ---- + ---- + -- - ---- + -- - --
6 4 2 6 4 2 6 4 2 4
a a a a a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 5]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 2
-2 5 4 4 z 7 z 3 z z 2 z 4 z 15 z 8 z
-2 5 4 4 z 7 z 3 z z 2 z 4 z 15 z 8 z
-- - -- - -- + --- + --- + --- + --- - ---- + ---- + ----- + ---- +
-- - -- - -- + --- + --- + --- + --- - ---- + ---- + ----- + ---- +
Line 104: Line 200:
---- + ---- + -- + -- + --
---- + ---- + -- + -- + --
6 4 2 5 3
6 4 2 5 3
a a a a a</nowiki></pre></td></tr>
a a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 5]], Vassiliev[3][Knot[8, 5]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -3}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 5]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 5]], Vassiliev[3][Knot[8, 5]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -3}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 5]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3
3 5 1 q 5 7 7 2 9 2 9 3
3 5 1 q 5 7 7 2 9 2 9 3
3 q + q + ---- + -- + q t + 2 q t + 2 q t + q t + 2 q t +
3 q + q + ---- + -- + q t + 2 q t + 2 q t + q t + 2 q t +
Line 115: Line 221:
11 3 11 4 13 4 13 5 15 5 17 6
11 3 11 4 13 4 13 5 15 5 17 6
2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr>
2 q t + q t + 2 q t + q t + q t + q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 5], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 1 2 3 4 6 7 8 9
-1 + q - - + 4 q - q - 5 q + 7 q - 9 q + 8 q + 3 q - 12 q +
q
10 11 12 13 14 15 16 17
7 q + 6 q - 12 q + 5 q + 7 q - 10 q + 3 q + 5 q -
18 19 20 21 22
6 q + 2 q + q - 2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:01, 1 September 2005

8 4.gif

8_4

8 6.gif

8_6

8 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 5 at Knotilus!

8 5 is also known as the pretzel knot P(3,3,2).


Symmetric alternative representation
Pretzel P(3,3,2) form Photo 01-09-2017 besalu.jpg.
Sum of 8.5 ; church of Besalu, Catalogna

Knot presentations

Planar diagram presentation X6271 X8493 X2837 X14,10,15,9 X12,5,13,6 X4,13,5,14 X16,12,1,11 X10,16,11,15
Gauss code 1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7
Dowker-Thistlethwaite code 6 8 12 2 14 16 4 10
Conway Notation [3,3,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 5 ML.gif 8 5 AP.gif
[{6, 11}, {1, 10}, {11, 9}, {10, 4}, {8, 3}, {9, 7}, {5, 8}, {4, 2}, {3, 6}, {2, 5}, {7, 1}]

[edit Notes on presentations of 8 5]

Knot 8_5.
A graph, knot 8_5.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-11]
Hyperbolic Volume 6.99719
A-Polynomial See Data:8 5/A-polynomial

[edit Notes for 8 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 8 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 21, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_141,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 8 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456χ
17        11
15       1 -1
13      21 1
11     21  -1
9    12   -1
7   22    0
5  11     0
3 13      2
1         0
-11        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials