9 6: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=9_6}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 9 | |
|||
k = 6 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,6,-4,7,-5,8,-9,2,-8,3,-6,4,-7,5/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-15</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-17</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-19</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-21</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-23</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -3 q^{-11} +9 q^{-12} -4 q^{-13} -8 q^{-14} +12 q^{-15} -2 q^{-16} -13 q^{-17} +14 q^{-18} + q^{-19} -16 q^{-20} +14 q^{-21} +3 q^{-22} -16 q^{-23} +11 q^{-24} +3 q^{-25} -11 q^{-26} +7 q^{-27} + q^{-28} -5 q^{-29} +4 q^{-30} -2 q^{-32} + q^{-33} </math> | |
|||
coloured_jones_3 = <math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} +2 q^{-16} +9 q^{-17} -4 q^{-18} -9 q^{-19} -2 q^{-20} +17 q^{-21} -14 q^{-23} -9 q^{-24} +18 q^{-25} +8 q^{-26} -12 q^{-27} -16 q^{-28} +14 q^{-29} +13 q^{-30} -6 q^{-31} -17 q^{-32} +5 q^{-33} +15 q^{-34} -16 q^{-36} -4 q^{-37} +16 q^{-38} +5 q^{-39} -13 q^{-40} -10 q^{-41} +14 q^{-42} +9 q^{-43} -10 q^{-44} -9 q^{-45} +8 q^{-46} +6 q^{-47} -4 q^{-48} -3 q^{-49} +3 q^{-50} - q^{-51} -2 q^{-52} +3 q^{-53} +2 q^{-54} -4 q^{-55} -2 q^{-56} +3 q^{-57} +3 q^{-58} -3 q^{-59} - q^{-60} +2 q^{-62} - q^{-63} </math> | |
|||
coloured_jones_4 = <math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} + q^{-21} +10 q^{-22} -9 q^{-23} -9 q^{-24} + q^{-25} + q^{-26} +25 q^{-27} -8 q^{-28} -16 q^{-29} -8 q^{-30} -9 q^{-31} +41 q^{-32} - q^{-33} -13 q^{-34} -13 q^{-35} -27 q^{-36} +45 q^{-37} +2 q^{-38} - q^{-39} -4 q^{-40} -40 q^{-41} +40 q^{-42} -9 q^{-43} +4 q^{-44} +15 q^{-45} -36 q^{-46} +35 q^{-47} -32 q^{-48} - q^{-49} +34 q^{-50} -22 q^{-51} +37 q^{-52} -56 q^{-53} -13 q^{-54} +48 q^{-55} -6 q^{-56} +42 q^{-57} -75 q^{-58} -24 q^{-59} +60 q^{-60} +7 q^{-61} +44 q^{-62} -88 q^{-63} -34 q^{-64} +66 q^{-65} +19 q^{-66} +45 q^{-67} -91 q^{-68} -42 q^{-69} +57 q^{-70} +26 q^{-71} +52 q^{-72} -76 q^{-73} -48 q^{-74} +34 q^{-75} +21 q^{-76} +56 q^{-77} -47 q^{-78} -39 q^{-79} +10 q^{-80} +3 q^{-81} +49 q^{-82} -18 q^{-83} -22 q^{-84} -2 q^{-85} -10 q^{-86} +32 q^{-87} -4 q^{-88} -7 q^{-89} -3 q^{-90} -12 q^{-91} +16 q^{-92} - q^{-95} -7 q^{-96} +5 q^{-97} + q^{-99} -2 q^{-101} + q^{-102} </math> | |
|||
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} </math> | |
|||
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11], |
|||
X[11, 2, 12, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 14, 16, 18, 2, 10, 6, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 6]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_6_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 6]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 6]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 5 2 3 |
|||
-5 + -- - -- + - + 5 t - 4 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 6]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 7 z + 8 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 6]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{27, -6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 6]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 2 3 4 5 4 3 3 -4 -3 |
|||
-q + --- - --- + -- - -- + -- - -- + -- - q + q |
|||
11 10 9 8 7 6 5 |
|||
q q q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 6]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 6]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -36 2 -22 -20 2 -16 2 -10 |
|||
-q - --- - q + q + --- + q + --- + q |
|||
26 18 14 |
|||
q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 6]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4 |
|||
3 a - a - a + 7 a z + 3 a z - 3 a z + 5 a z + 4 a z - |
|||
10 4 6 6 8 6 |
|||
a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 6]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 7 9 11 15 6 2 8 2 |
|||
-3 a - a + a + 2 a z - a z - 2 a z - a z + 7 a z + a z - |
|||
10 2 12 2 14 2 9 3 11 3 13 3 15 3 |
|||
3 a z + a z - 2 a z + 8 a z + 6 a z - a z + a z - |
|||
6 4 8 4 10 4 12 4 14 4 7 5 |
|||
5 a z + a z + 2 a z - 2 a z + 2 a z - 3 a z - |
|||
9 5 11 5 13 5 6 6 8 6 10 6 |
|||
10 a z - 5 a z + 2 a z + a z - 3 a z - 2 a z + |
|||
12 6 7 7 9 7 11 7 8 8 10 8 |
|||
2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -18}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 6]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 1 1 2 1 2 |
|||
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
25 9 23 8 21 8 21 7 19 7 19 6 |
|||
q t q t q t q t q t q t |
|||
2 3 2 1 3 2 1 |
|||
------ + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
17 6 17 5 15 5 15 4 13 4 13 3 11 3 |
|||
q t q t q t q t q t q t q t |
|||
1 2 1 |
|||
------ + ----- + ---- |
|||
11 2 9 2 7 |
|||
q t q t q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 6], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -33 2 4 5 -28 7 11 3 11 16 3 |
|||
q - --- + --- - --- + q + --- - --- + --- + --- - --- + --- + |
|||
32 30 29 27 26 25 24 23 22 |
|||
q q q q q q q q q |
|||
14 16 -19 14 13 2 12 8 4 9 3 |
|||
--- - --- + q + --- - --- - --- + --- - --- - --- + --- - --- - |
|||
21 20 18 17 16 15 14 13 12 11 |
|||
q q q q q q q q q q |
|||
3 4 -7 -6 |
|||
--- + -- - q + q |
|||
10 9 |
|||
q q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:59, 1 September 2005
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3 |
Gauss code | -1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 10 6 8 |
Conway Notation | [522] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
![]() |
![]() [{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 1}] |
[edit Notes on presentations of 9 6]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 6"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 2 10 6 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[522] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{-1,-1,-1,-1,-1,-1,-2,1,-2,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+7 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 27, -6 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-4} +3 q^{-5} -3 q^{-6} +4 q^{-7} -5 q^{-8} +4 q^{-9} -3 q^{-10} +2 q^{-11} - q^{-12} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}-3 z^2 a^{10}-a^{10}+z^6 a^8+4 z^4 a^8+3 z^2 a^8-a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+3 a^6} |
Kauffman polynomial (db, data sources) | |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{36}-2 q^{26}-q^{22}+q^{20}+2 q^{18}+q^{16}+2 q^{14}+q^{10}} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{186}-2 q^{184}+4 q^{182}-4 q^{180}+4 q^{178}-2 q^{176}-q^{174}+3 q^{172}-4 q^{170}+4 q^{168}-5 q^{166}+3 q^{164}-3 q^{162}-q^{160}+3 q^{158}-4 q^{156}+5 q^{154}-4 q^{152}+2 q^{150}-4 q^{146}+4 q^{144}-2 q^{142}-q^{140}+6 q^{138}-5 q^{136}+2 q^{134}+3 q^{132}-6 q^{130}+9 q^{128}-10 q^{126}+3 q^{124}-5 q^{120}+10 q^{118}-12 q^{116}+6 q^{114}-3 q^{112}-2 q^{110}+3 q^{108}-9 q^{106}+6 q^{104}-4 q^{102}+4 q^{98}-6 q^{96}+4 q^{94}+3 q^{92}-5 q^{90}+7 q^{88}-6 q^{86}+2 q^{84}+5 q^{82}-7 q^{80}+11 q^{78}-7 q^{76}+5 q^{74}+2 q^{72}-4 q^{70}+7 q^{68}-5 q^{66}+5 q^{64}+2 q^{58}-q^{56}+2 q^{54}+q^{50}} |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{25}+q^{23}-q^{21}+q^{19}-q^{17}-q^{15}+q^{13}+2 q^9+q^5} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{66}-q^{64}+2 q^{62}-q^{60}+3 q^{56}-3 q^{54}-q^{52}+3 q^{50}-2 q^{48}-2 q^{46}+q^{44}+q^{42}-q^{40}-q^{38}+2 q^{36}-q^{34}-3 q^{32}+2 q^{30}-3 q^{26}+2 q^{24}+3 q^{22}-2 q^{20}+q^{18}+3 q^{16}+q^{10}} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{129}+q^{127}+q^{125}-2 q^{121}-q^{119}+2 q^{117}+q^{115}-q^{111}-q^{109}-q^{107}+2 q^{105}+3 q^{103}-3 q^{101}-5 q^{99}+2 q^{97}+7 q^{95}+q^{93}-5 q^{91}-2 q^{89}+4 q^{87}+3 q^{85}-4 q^{81}-2 q^{79}+4 q^{77}+q^{75}-4 q^{73}-5 q^{71}+4 q^{69}+3 q^{67}-3 q^{65}-5 q^{63}+4 q^{61}+5 q^{59}-q^{57}-6 q^{55}-2 q^{53}+5 q^{51}+3 q^{49}-5 q^{47}-6 q^{45}+q^{43}+6 q^{41}+2 q^{39}-6 q^{37}-2 q^{35}+4 q^{33}+5 q^{31}-q^{29}-2 q^{27}+q^{25}+3 q^{23}+q^{21}+q^{15}} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{208}-q^{206}-q^{204}+4 q^{198}-q^{196}-2 q^{194}-3 q^{192}-3 q^{190}+8 q^{188}+3 q^{186}+q^{184}-6 q^{182}-10 q^{180}+6 q^{178}+8 q^{176}+9 q^{174}-6 q^{172}-20 q^{170}-3 q^{168}+10 q^{166}+22 q^{164}+5 q^{162}-24 q^{160}-17 q^{158}+q^{156}+25 q^{154}+16 q^{152}-13 q^{150}-17 q^{148}-12 q^{146}+11 q^{144}+17 q^{142}+2 q^{140}-5 q^{138}-12 q^{136}-3 q^{134}+5 q^{132}+8 q^{130}+7 q^{128}-5 q^{126}-11 q^{124}-q^{122}+12 q^{120}+10 q^{118}-3 q^{116}-15 q^{114}-4 q^{112}+15 q^{110}+10 q^{108}-6 q^{106}-20 q^{104}-8 q^{102}+16 q^{100}+14 q^{98}-19 q^{94}-14 q^{92}+9 q^{90}+14 q^{88}+10 q^{86}-9 q^{84}-14 q^{82}-3 q^{80}+2 q^{78}+15 q^{76}+6 q^{74}-6 q^{72}-9 q^{70}-13 q^{68}+5 q^{66}+10 q^{64}+7 q^{62}-16 q^{58}-6 q^{56}+3 q^{54}+10 q^{52}+9 q^{50}-6 q^{48}-6 q^{46}-4 q^{44}+3 q^{42}+8 q^{40}+q^{38}-2 q^{34}+3 q^{30}+q^{28}+q^{26}+q^{20}} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{305}+q^{303}+q^{301}-2 q^{295}-2 q^{293}+q^{291}+4 q^{289}+2 q^{287}+q^{285}-4 q^{283}-8 q^{281}-3 q^{279}+5 q^{277}+11 q^{275}+7 q^{273}-3 q^{271}-14 q^{269}-14 q^{267}+3 q^{265}+21 q^{263}+19 q^{261}-2 q^{259}-25 q^{257}-31 q^{255}-5 q^{253}+35 q^{251}+44 q^{249}+11 q^{247}-40 q^{245}-59 q^{243}-24 q^{241}+40 q^{239}+78 q^{237}+42 q^{235}-35 q^{233}-86 q^{231}-58 q^{229}+20 q^{227}+82 q^{225}+73 q^{223}-q^{221}-69 q^{219}-75 q^{217}-20 q^{215}+44 q^{213}+63 q^{211}+33 q^{209}-17 q^{207}-47 q^{205}-38 q^{203}-2 q^{201}+25 q^{199}+31 q^{197}+19 q^{195}-7 q^{193}-23 q^{191}-24 q^{189}-6 q^{187}+17 q^{185}+26 q^{183}+13 q^{181}-14 q^{179}-31 q^{177}-15 q^{175}+19 q^{173}+32 q^{171}+15 q^{169}-21 q^{167}-42 q^{165}-16 q^{163}+33 q^{161}+48 q^{159}+22 q^{157}-27 q^{155}-58 q^{153}-30 q^{151}+30 q^{149}+62 q^{147}+39 q^{145}-18 q^{143}-62 q^{141}-51 q^{139}+6 q^{137}+55 q^{135}+56 q^{133}+9 q^{131}-45 q^{129}-58 q^{127}-26 q^{125}+25 q^{123}+49 q^{121}+35 q^{119}-7 q^{117}-35 q^{115}-34 q^{113}-12 q^{111}+13 q^{109}+26 q^{107}+23 q^{105}+6 q^{103}-11 q^{101}-18 q^{99}-21 q^{97}-8 q^{95}+10 q^{93}+22 q^{91}+18 q^{89}+5 q^{87}-14 q^{85}-28 q^{83}-17 q^{81}+3 q^{79}+19 q^{77}+22 q^{75}+9 q^{73}-11 q^{71}-20 q^{69}-14 q^{67}+13 q^{63}+14 q^{61}+5 q^{59}-3 q^{57}-9 q^{55}-6 q^{53}+q^{51}+6 q^{49}+4 q^{47}+3 q^{45}-2 q^{41}+2 q^{37}+q^{35}+q^{33}+q^{31}+q^{25}} |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{82}+q^{80}-2 q^{78}+2 q^{76}-2 q^{74}+3 q^{72}-3 q^{70}+3 q^{68}-2 q^{66}+q^{64}-2 q^{60}+3 q^{58}-5 q^{56}+5 q^{54}-6 q^{52}+5 q^{50}-6 q^{48}+4 q^{46}-3 q^{44}+q^{42}-q^{38}+3 q^{36}-2 q^{34}+4 q^{32}-2 q^{30}+4 q^{28}-q^{26}+2 q^{24}+q^{20}} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{132}-q^{128}-q^{126}+q^{124}+2 q^{122}-2 q^{118}-2 q^{116}+q^{114}+3 q^{112}+q^{110}-2 q^{108}-2 q^{106}+q^{104}+3 q^{102}-3 q^{98}-q^{96}+2 q^{94}+q^{92}-3 q^{90}-2 q^{88}+q^{86}+2 q^{84}-q^{82}-q^{80}+q^{76}-q^{74}-3 q^{72}-2 q^{70}+q^{68}+q^{66}-3 q^{64}-4 q^{62}+4 q^{58}+2 q^{56}-q^{54}-2 q^{52}+3 q^{50}+4 q^{48}+2 q^{46}-q^{44}+q^{42}+2 q^{40}+2 q^{38}+q^{30}} |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-q^{112}+q^{110}-q^{108}+2 q^{106}-2 q^{104}+q^{102}-2 q^{100}+3 q^{98}-2 q^{96}+q^{94}-2 q^{92}+2 q^{90}+q^{84}-2 q^{82}+3 q^{80}-4 q^{78}+3 q^{76}-6 q^{74}+3 q^{72}-5 q^{70}+3 q^{68}-5 q^{66}+2 q^{64}-4 q^{62}-3 q^{58}-2 q^{56}-2 q^{52}+2 q^{50}+6 q^{46}+q^{44}+6 q^{42}+q^{40}+5 q^{38}+q^{36}+2 q^{34}+q^{30}} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{186}-2 q^{184}+4 q^{182}-4 q^{180}+4 q^{178}-2 q^{176}-q^{174}+3 q^{172}-4 q^{170}+4 q^{168}-5 q^{166}+3 q^{164}-3 q^{162}-q^{160}+3 q^{158}-4 q^{156}+5 q^{154}-4 q^{152}+2 q^{150}-4 q^{146}+4 q^{144}-2 q^{142}-q^{140}+6 q^{138}-5 q^{136}+2 q^{134}+3 q^{132}-6 q^{130}+9 q^{128}-10 q^{126}+3 q^{124}-5 q^{120}+10 q^{118}-12 q^{116}+6 q^{114}-3 q^{112}-2 q^{110}+3 q^{108}-9 q^{106}+6 q^{104}-4 q^{102}+4 q^{98}-6 q^{96}+4 q^{94}+3 q^{92}-5 q^{90}+7 q^{88}-6 q^{86}+2 q^{84}+5 q^{82}-7 q^{80}+11 q^{78}-7 q^{76}+5 q^{74}+2 q^{72}-4 q^{70}+7 q^{68}-5 q^{66}+5 q^{64}+2 q^{58}-q^{56}+2 q^{54}+q^{50}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 6"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+7 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-4} +3 q^{-5} -3 q^{-6} +4 q^{-7} -5 q^{-8} +4 q^{-9} -3 q^{-10} +2 q^{-11} - q^{-12} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}-3 z^2 a^{10}-a^{10}+z^6 a^8+4 z^4 a^8+3 z^2 a^8-a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+3 a^6} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 6"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-4} +3 q^{-5} -3 q^{-6} +4 q^{-7} -5 q^{-8} +4 q^{-9} -3 q^{-10} +2 q^{-11} - q^{-12} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (7, -18) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -6 is the signature of 9 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -3 q^{-11} +9 q^{-12} -4 q^{-13} -8 q^{-14} +12 q^{-15} -2 q^{-16} -13 q^{-17} +14 q^{-18} + q^{-19} -16 q^{-20} +14 q^{-21} +3 q^{-22} -16 q^{-23} +11 q^{-24} +3 q^{-25} -11 q^{-26} +7 q^{-27} + q^{-28} -5 q^{-29} +4 q^{-30} -2 q^{-32} + q^{-33} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} +2 q^{-16} +9 q^{-17} -4 q^{-18} -9 q^{-19} -2 q^{-20} +17 q^{-21} -14 q^{-23} -9 q^{-24} +18 q^{-25} +8 q^{-26} -12 q^{-27} -16 q^{-28} +14 q^{-29} +13 q^{-30} -6 q^{-31} -17 q^{-32} +5 q^{-33} +15 q^{-34} -16 q^{-36} -4 q^{-37} +16 q^{-38} +5 q^{-39} -13 q^{-40} -10 q^{-41} +14 q^{-42} +9 q^{-43} -10 q^{-44} -9 q^{-45} +8 q^{-46} +6 q^{-47} -4 q^{-48} -3 q^{-49} +3 q^{-50} - q^{-51} -2 q^{-52} +3 q^{-53} +2 q^{-54} -4 q^{-55} -2 q^{-56} +3 q^{-57} +3 q^{-58} -3 q^{-59} - q^{-60} +2 q^{-62} - q^{-63} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} + q^{-21} +10 q^{-22} -9 q^{-23} -9 q^{-24} + q^{-25} + q^{-26} +25 q^{-27} -8 q^{-28} -16 q^{-29} -8 q^{-30} -9 q^{-31} +41 q^{-32} - q^{-33} -13 q^{-34} -13 q^{-35} -27 q^{-36} +45 q^{-37} +2 q^{-38} - q^{-39} -4 q^{-40} -40 q^{-41} +40 q^{-42} -9 q^{-43} +4 q^{-44} +15 q^{-45} -36 q^{-46} +35 q^{-47} -32 q^{-48} - q^{-49} +34 q^{-50} -22 q^{-51} +37 q^{-52} -56 q^{-53} -13 q^{-54} +48 q^{-55} -6 q^{-56} +42 q^{-57} -75 q^{-58} -24 q^{-59} +60 q^{-60} +7 q^{-61} +44 q^{-62} -88 q^{-63} -34 q^{-64} +66 q^{-65} +19 q^{-66} +45 q^{-67} -91 q^{-68} -42 q^{-69} +57 q^{-70} +26 q^{-71} +52 q^{-72} -76 q^{-73} -48 q^{-74} +34 q^{-75} +21 q^{-76} +56 q^{-77} -47 q^{-78} -39 q^{-79} +10 q^{-80} +3 q^{-81} +49 q^{-82} -18 q^{-83} -22 q^{-84} -2 q^{-85} -10 q^{-86} +32 q^{-87} -4 q^{-88} -7 q^{-89} -3 q^{-90} -12 q^{-91} +16 q^{-92} - q^{-95} -7 q^{-96} +5 q^{-97} + q^{-99} -2 q^{-101} + q^{-102} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|