9 8: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=9_8}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 9 | |
|||
k = 8 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,7,-5,6,-8,3,-6,5,-7,4/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
same_alexander = [[8_14]], [[10_131]], | |
|||
same_jones = [[K11n60]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{10}-2 q^9-q^8+6 q^7-4 q^6-6 q^5+12 q^4-3 q^3-13 q^2+16 q+1-19 q^{-1} +17 q^{-2} +5 q^{-3} -22 q^{-4} +15 q^{-5} +8 q^{-6} -20 q^{-7} +11 q^{-8} +6 q^{-9} -13 q^{-10} +7 q^{-11} +2 q^{-12} -6 q^{-13} +4 q^{-14} -2 q^{-16} + q^{-17} </math> | |
|||
coloured_jones_3 = <math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+5 q^{17}-3 q^{16}-9 q^{15}+q^{14}+14 q^{13}+2 q^{12}-16 q^{11}-9 q^{10}+19 q^9+14 q^8-17 q^7-20 q^6+13 q^5+24 q^4-8 q^3-26 q^2+3 q+26+4 q^{-1} -25 q^{-2} -9 q^{-3} +22 q^{-4} +16 q^{-5} -21 q^{-6} -19 q^{-7} +15 q^{-8} +26 q^{-9} -14 q^{-10} -24 q^{-11} +6 q^{-12} +27 q^{-13} -7 q^{-14} -17 q^{-15} - q^{-16} +15 q^{-17} -2 q^{-18} -6 q^{-19} + q^{-20} +2 q^{-21} -3 q^{-22} +2 q^{-23} +3 q^{-24} -3 q^{-25} -3 q^{-26} +2 q^{-27} +4 q^{-28} -3 q^{-29} - q^{-30} +2 q^{-32} - q^{-33} </math> | |
|||
coloured_jones_4 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+6 q^{31}-7 q^{30}-7 q^{29}+q^{27}+24 q^{26}-6 q^{25}-15 q^{24}-11 q^{23}-13 q^{22}+43 q^{21}+6 q^{20}-7 q^{19}-18 q^{18}-43 q^{17}+46 q^{16}+12 q^{15}+14 q^{14}-3 q^{13}-64 q^{12}+34 q^{11}-7 q^{10}+27 q^9+28 q^8-60 q^7+29 q^6-44 q^5+15 q^4+55 q^3-34 q^2+42 q-82-14 q^{-1} +69 q^{-2} -3 q^{-3} +66 q^{-4} -111 q^{-5} -48 q^{-6} +74 q^{-7} +28 q^{-8} +88 q^{-9} -133 q^{-10} -79 q^{-11} +75 q^{-12} +56 q^{-13} +106 q^{-14} -144 q^{-15} -107 q^{-16} +64 q^{-17} +75 q^{-18} +122 q^{-19} -130 q^{-20} -119 q^{-21} +35 q^{-22} +65 q^{-23} +129 q^{-24} -87 q^{-25} -102 q^{-26} +4 q^{-27} +31 q^{-28} +108 q^{-29} -41 q^{-30} -60 q^{-31} -9 q^{-32} -4 q^{-33} +70 q^{-34} -12 q^{-35} -24 q^{-36} -7 q^{-37} -18 q^{-38} +37 q^{-39} -2 q^{-40} -5 q^{-41} -2 q^{-42} -16 q^{-43} +16 q^{-44} + q^{-46} -8 q^{-48} +5 q^{-49} + q^{-51} -2 q^{-53} + q^{-54} </math> | |
|||
coloured_jones_5 = <math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+2 q^{49}-5 q^{48}-9 q^{47}+5 q^{45}+10 q^{44}+13 q^{43}-2 q^{42}-20 q^{41}-21 q^{40}-4 q^{39}+15 q^{38}+32 q^{37}+23 q^{36}-12 q^{35}-36 q^{34}-35 q^{33}-6 q^{32}+31 q^{31}+45 q^{30}+23 q^{29}-15 q^{28}-42 q^{27}-38 q^{26}-q^{25}+25 q^{24}+32 q^{23}+23 q^{22}-18 q^{20}-23 q^{19}-25 q^{18}-21 q^{17}+10 q^{16}+48 q^{15}+59 q^{14}+26 q^{13}-51 q^{12}-104 q^{11}-76 q^{10}+36 q^9+142 q^8+136 q^7-6 q^6-166 q^5-195 q^4-42 q^3+176 q^2+256 q+94-176 q^{-1} -304 q^{-2} -149 q^{-3} +161 q^{-4} +350 q^{-5} +205 q^{-6} -152 q^{-7} -381 q^{-8} -253 q^{-9} +131 q^{-10} +417 q^{-11} +298 q^{-12} -123 q^{-13} -439 q^{-14} -338 q^{-15} +103 q^{-16} +475 q^{-17} +375 q^{-18} -101 q^{-19} -485 q^{-20} -413 q^{-21} +70 q^{-22} +517 q^{-23} +443 q^{-24} -60 q^{-25} -496 q^{-26} -471 q^{-27} +4 q^{-28} +493 q^{-29} +485 q^{-30} +17 q^{-31} -428 q^{-32} -472 q^{-33} -83 q^{-34} +379 q^{-35} +445 q^{-36} +96 q^{-37} -292 q^{-38} -382 q^{-39} -127 q^{-40} +222 q^{-41} +320 q^{-42} +114 q^{-43} -148 q^{-44} -245 q^{-45} -107 q^{-46} +102 q^{-47} +177 q^{-48} +83 q^{-49} -61 q^{-50} -122 q^{-51} -66 q^{-52} +38 q^{-53} +83 q^{-54} +44 q^{-55} -21 q^{-56} -52 q^{-57} -30 q^{-58} +7 q^{-59} +34 q^{-60} +25 q^{-61} -8 q^{-62} -20 q^{-63} -10 q^{-64} -3 q^{-65} +10 q^{-66} +14 q^{-67} -2 q^{-68} -8 q^{-69} - q^{-70} -4 q^{-71} +2 q^{-72} +6 q^{-73} - q^{-74} -2 q^{-75} - q^{-77} +2 q^{-79} - q^{-80} </math> | |
|||
coloured_jones_6 = <math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+4 q^{71}-7 q^{70}-9 q^{69}+3 q^{68}+4 q^{67}+11 q^{66}+2 q^{65}+18 q^{64}-14 q^{63}-27 q^{62}-13 q^{61}-7 q^{60}+17 q^{59}+9 q^{58}+63 q^{57}+4 q^{56}-31 q^{55}-35 q^{54}-43 q^{53}-12 q^{52}-20 q^{51}+102 q^{50}+44 q^{49}+13 q^{48}-15 q^{47}-46 q^{46}-48 q^{45}-98 q^{44}+82 q^{43}+28 q^{42}+44 q^{41}+31 q^{40}+23 q^{39}+q^{38}-125 q^{37}+53 q^{36}-56 q^{35}-29 q^{34}-23 q^{33}+66 q^{32}+108 q^{31}-21 q^{30}+156 q^{29}-69 q^{28}-138 q^{27}-225 q^{26}-62 q^{25}+105 q^{24}+102 q^{23}+401 q^{22}+125 q^{21}-99 q^{20}-423 q^{19}-337 q^{18}-121 q^{17}+55 q^{16}+614 q^{15}+465 q^{14}+170 q^{13}-432 q^{12}-571 q^{11}-483 q^{10}-223 q^9+629 q^8+765 q^7+569 q^6-215 q^5-622 q^4-805 q^3-624 q^2+431 q+904+938 q^{-1} +123 q^{-2} -493 q^{-3} -993 q^{-4} -1007 q^{-5} +126 q^{-6} +895 q^{-7} +1200 q^{-8} +455 q^{-9} -285 q^{-10} -1064 q^{-11} -1303 q^{-12} -171 q^{-13} +830 q^{-14} +1370 q^{-15} +721 q^{-16} -101 q^{-17} -1098 q^{-18} -1519 q^{-19} -405 q^{-20} +789 q^{-21} +1508 q^{-22} +926 q^{-23} +22 q^{-24} -1150 q^{-25} -1701 q^{-26} -591 q^{-27} +772 q^{-28} +1639 q^{-29} +1118 q^{-30} +135 q^{-31} -1179 q^{-32} -1854 q^{-33} -792 q^{-34} +682 q^{-35} +1690 q^{-36} +1297 q^{-37} +325 q^{-38} -1063 q^{-39} -1883 q^{-40} -992 q^{-41} +428 q^{-42} +1519 q^{-43} +1347 q^{-44} +556 q^{-45} -737 q^{-46} -1654 q^{-47} -1048 q^{-48} +99 q^{-49} +1105 q^{-50} +1136 q^{-51} +653 q^{-52} -342 q^{-53} -1185 q^{-54} -847 q^{-55} -108 q^{-56} +635 q^{-57} +727 q^{-58} +526 q^{-59} -82 q^{-60} -695 q^{-61} -496 q^{-62} -119 q^{-63} +307 q^{-64} +343 q^{-65} +296 q^{-66} + q^{-67} -361 q^{-68} -207 q^{-69} -46 q^{-70} +151 q^{-71} +118 q^{-72} +125 q^{-73} +2 q^{-74} -190 q^{-75} -59 q^{-76} -2 q^{-77} +85 q^{-78} +31 q^{-79} +48 q^{-80} - q^{-81} -106 q^{-82} -9 q^{-83} +4 q^{-84} +46 q^{-85} +7 q^{-86} +23 q^{-87} + q^{-88} -55 q^{-89} +2 q^{-90} -2 q^{-91} +21 q^{-92} +13 q^{-94} +2 q^{-95} -24 q^{-96} +4 q^{-97} -4 q^{-98} +8 q^{-99} - q^{-100} +5 q^{-101} + q^{-102} -8 q^{-103} +3 q^{-104} -2 q^{-105} +2 q^{-106} + q^{-108} -2 q^{-110} + q^{-111} </math> | |
|||
coloured_jones_7 = <math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+2 q^{97}-7 q^{96}-6 q^{95}+2 q^{94}+4 q^{93}+13 q^{92}+4 q^{91}+9 q^{89}-18 q^{88}-23 q^{87}-16 q^{86}-9 q^{85}+27 q^{84}+25 q^{83}+21 q^{82}+41 q^{81}-6 q^{80}-34 q^{79}-47 q^{78}-74 q^{77}-2 q^{76}+20 q^{75}+33 q^{74}+98 q^{73}+51 q^{72}+22 q^{71}-21 q^{70}-120 q^{69}-68 q^{68}-47 q^{67}-37 q^{66}+88 q^{65}+66 q^{64}+87 q^{63}+92 q^{62}-60 q^{61}-30 q^{60}-55 q^{59}-106 q^{58}+8 q^{57}-47 q^{56}-9 q^{55}+86 q^{54}-21 q^{53}+89 q^{52}+111 q^{51}+24 q^{50}+113 q^{49}-87 q^{48}-194 q^{47}-160 q^{46}-282 q^{45}-37 q^{44}+189 q^{43}+276 q^{42}+518 q^{41}+280 q^{40}-60 q^{39}-308 q^{38}-739 q^{37}-585 q^{36}-217 q^{35}+169 q^{34}+857 q^{33}+926 q^{32}+616 q^{31}+119 q^{30}-826 q^{29}-1166 q^{28}-1039 q^{27}-577 q^{26}+584 q^{25}+1262 q^{24}+1432 q^{23}+1110 q^{22}-168 q^{21}-1154 q^{20}-1689 q^{19}-1640 q^{18}-385 q^{17}+837 q^{16}+1754 q^{15}+2101 q^{14}+1008 q^{13}-356 q^{12}-1635 q^{11}-2413 q^{10}-1596 q^9-248 q^8+1313 q^7+2554 q^6+2137 q^5+897 q^4-861 q^3-2540 q^2-2550 q-1529+315 q^{-1} +2369 q^{-2} +2843 q^{-3} +2130 q^{-4} +271 q^{-5} -2121 q^{-6} -3031 q^{-7} -2635 q^{-8} -832 q^{-9} +1789 q^{-10} +3125 q^{-11} +3072 q^{-12} +1371 q^{-13} -1466 q^{-14} -3167 q^{-15} -3425 q^{-16} -1833 q^{-17} +1156 q^{-18} +3174 q^{-19} +3717 q^{-20} +2229 q^{-21} -889 q^{-22} -3187 q^{-23} -3968 q^{-24} -2553 q^{-25} +684 q^{-26} +3226 q^{-27} +4189 q^{-28} +2816 q^{-29} -538 q^{-30} -3284 q^{-31} -4403 q^{-32} -3058 q^{-33} +419 q^{-34} +3389 q^{-35} +4638 q^{-36} +3272 q^{-37} -328 q^{-38} -3462 q^{-39} -4848 q^{-40} -3538 q^{-41} +154 q^{-42} +3524 q^{-43} +5082 q^{-44} +3800 q^{-45} +52 q^{-46} -3449 q^{-47} -5191 q^{-48} -4102 q^{-49} -422 q^{-50} +3238 q^{-51} +5228 q^{-52} +4359 q^{-53} +816 q^{-54} -2844 q^{-55} -5022 q^{-56} -4488 q^{-57} -1295 q^{-58} +2267 q^{-59} +4638 q^{-60} +4470 q^{-61} +1682 q^{-62} -1637 q^{-63} -4014 q^{-64} -4185 q^{-65} -1941 q^{-66} +945 q^{-67} +3259 q^{-68} +3730 q^{-69} +2007 q^{-70} -391 q^{-71} -2460 q^{-72} -3070 q^{-73} -1872 q^{-74} -39 q^{-75} +1705 q^{-76} +2370 q^{-77} +1579 q^{-78} +275 q^{-79} -1070 q^{-80} -1693 q^{-81} -1208 q^{-82} -357 q^{-83} +616 q^{-84} +1104 q^{-85} +816 q^{-86} +339 q^{-87} -303 q^{-88} -659 q^{-89} -498 q^{-90} -258 q^{-91} +136 q^{-92} +358 q^{-93} +242 q^{-94} +156 q^{-95} -44 q^{-96} -161 q^{-97} -78 q^{-98} -92 q^{-99} +13 q^{-100} +72 q^{-101} -12 q^{-102} +26 q^{-103} -14 q^{-104} -15 q^{-105} +62 q^{-106} -2 q^{-107} +6 q^{-108} +3 q^{-109} -59 q^{-110} -11 q^{-111} -22 q^{-112} -6 q^{-113} +65 q^{-114} +20 q^{-115} +12 q^{-116} - q^{-117} -42 q^{-118} -5 q^{-119} -19 q^{-120} -13 q^{-121} +34 q^{-122} +13 q^{-123} +10 q^{-124} +3 q^{-125} -20 q^{-126} -8 q^{-128} -9 q^{-129} +14 q^{-130} +2 q^{-131} +4 q^{-132} +4 q^{-133} -8 q^{-134} + q^{-135} -3 q^{-136} -2 q^{-137} +5 q^{-138} - q^{-139} +2 q^{-141} -2 q^{-142} - q^{-144} +2 q^{-146} - q^{-147} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 1, 10, 18], |
|||
X[11, 17, 12, 16], X[15, 13, 16, 12], X[17, 11, 18, 10], |
|||
X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 2, 18, 16, 6, 12, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, 2, 3, -2, -4, 3, -4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 8]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_8_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 8]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 8]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 2 |
|||
-11 - -- + - + 8 t - 2 t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 8]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 |
|||
1 - 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 14], Knot[9, 8], Knot[10, 131]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 8]], KnotSignature[Knot[9, 8]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{31, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 8]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 3 5 5 5 2 3 |
|||
-4 - q + -- - -- + -- - -- + - + 3 q - 2 q + q |
|||
5 4 3 2 q |
|||
q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 8], Knot[11, NonAlternating, 60]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 8]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 -16 -12 2 -6 -4 2 4 10 |
|||
-q - q + q + q + --- + q - q - q + q + q |
|||
10 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 8]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 4 6 2 z 2 2 4 2 4 2 4 |
|||
-1 + a + 2 a - a - 2 z + -- - a z + 2 a z - z - a z |
|||
2 |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 8]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 4 6 2 z 3 5 7 2 4 z |
|||
-1 - a + 2 a + a - --- - 3 a z - a z - a z - a z + 7 z + ---- + |
|||
a 2 |
|||
a |
|||
3 |
|||
2 2 4 2 6 2 8 z 3 3 3 7 3 |
|||
2 a z - 3 a z - 2 a z + ---- + 11 a z + 2 a z + a z - |
|||
a |
|||
4 5 |
|||
4 4 z 2 4 6 4 8 z 5 3 5 |
|||
6 z - ---- - 4 a z + 2 a z - ---- - 13 a z - 3 a z + |
|||
2 a |
|||
a |
|||
6 7 |
|||
5 5 6 z 4 6 2 z 7 3 7 8 2 8 |
|||
2 a z - z + -- + 2 a z + ---- + 4 a z + 2 a z + z + a z |
|||
2 a |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 8]], Vassiliev[3][Knot[9, 8]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 8]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 3 1 1 1 2 1 3 2 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
|||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
|||
q q t q t q t q t q t q t q t |
|||
2 3 2 t 2 3 2 3 3 5 3 7 4 |
|||
---- + ---- + --- + 2 q t + q t + 2 q t + q t + q t + q t |
|||
5 3 q |
|||
q t q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 8], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 2 4 6 2 7 13 6 11 20 8 15 |
|||
1 + q - --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - |
|||
16 14 13 12 11 10 9 8 7 6 5 |
|||
q q q q q q q q q q q |
|||
22 5 17 19 2 3 4 5 6 |
|||
-- + -- + -- - -- + 16 q - 13 q - 3 q + 12 q - 6 q - 4 q + |
|||
4 3 2 q |
|||
q q q |
|||
7 8 9 10 |
|||
6 q - q - 2 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:05, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,14,6,15 X9,1,10,18 X11,17,12,16 X15,13,16,12 X17,11,18,10 X13,6,14,7 X7283 |
Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4 |
Dowker-Thistlethwaite code | 4 8 14 2 18 16 6 12 10 |
Conway Notation | [2412] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {4, 9}, {3, 5}, {6, 4}, {5, 7}, {11, 6}, {7, 1}] |
[edit Notes on presentations of 9 8]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 8"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,14,6,15 X9,1,10,18 X11,17,12,16 X15,13,16,12 X17,11,18,10 X13,6,14,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 18 16 6 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2412] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {4, 9}, {3, 5}, {6, 4}, {5, 7}, {11, 6}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 8"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_14, 10_131,}
Same Jones Polynomial (up to mirroring, ): {K11n60,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 8"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_14, 10_131,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n60,} |
Vassiliev invariants
V2 and V3: | (0, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|