9 10: Difference between revisions
No edit summary |
m (Reverted edit of 200.238.102.170, changed back to last version by ScottTestRobot) |
(One intermediate revision by one other user not shown) | |
(No difference)
|
Latest revision as of 20:25, 10 April 2007
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13 |
Gauss code | 1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3 |
Dowker-Thistlethwaite code | 8 12 14 16 18 2 6 4 10 |
Conway Notation | [333] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{3, 11}, {2, 4}, {5, 3}, {4, 10}, {1, 5}, {11, 9}, {10, 6}, {7, 2}, {6, 8}, {9, 7}, {8, 1}] |
[edit Notes on presentations of 9 10]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 10"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
8 12 14 16 18 2 6 4 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[333] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,2,-1,2,2,2,2,3,-2,3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 11}, {2, 4}, {5, 3}, {4, 10}, {1, 5}, {11, 9}, {10, 6}, {7, 2}, {6, 8}, {9, 7}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-8 t+9-8 t^{-1} +4 t^{-2} } |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 33, 4 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^{10}-3 q^9+5 q^8-5 q^7+6 q^6-5 q^5+4 q^4-2 q^3+q^2} |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-4} +2 z^4 a^{-6} +z^4 a^{-8} +2 z^2 a^{-4} +5 z^2 a^{-6} +2 z^2 a^{-8} -z^2 a^{-10} +2 a^{-6} + a^{-8} -2 a^{-10} } |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} +2 z^5 a^{-5} -3 z^5 a^{-7} -7 z^5 a^{-9} -z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +9 z^4 a^{-10} -2 z^4 a^{-12} -3 z^3 a^{-5} +3 z^3 a^{-7} +9 z^3 a^{-9} -z^3 a^{-11} -4 z^3 a^{-13} -2 z^2 a^{-4} +7 z^2 a^{-6} -2 z^2 a^{-8} -11 z^2 a^{-10} -4 z a^{-9} +4 z a^{-13} -2 a^{-6} + a^{-8} +2 a^{-10} } |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-8} + q^{-10} +2 q^{-16} +2 q^{-20} + q^{-22} + q^{-24} + q^{-26} -2 q^{-28} - q^{-30} - q^{-32} - q^{-34} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -9 q^{-46} +11 q^{-48} -8 q^{-50} +3 q^{-52} +5 q^{-54} -13 q^{-56} +21 q^{-58} -19 q^{-60} +12 q^{-62} -2 q^{-64} -10 q^{-66} +18 q^{-68} -17 q^{-70} +14 q^{-72} -2 q^{-74} -7 q^{-76} +13 q^{-78} -9 q^{-80} - q^{-82} +12 q^{-84} -19 q^{-86} +18 q^{-88} -9 q^{-90} -4 q^{-92} +21 q^{-94} -28 q^{-96} +31 q^{-98} -20 q^{-100} +6 q^{-102} +11 q^{-104} -21 q^{-106} +26 q^{-108} -18 q^{-110} +12 q^{-112} +2 q^{-114} -10 q^{-116} +15 q^{-118} -10 q^{-120} -2 q^{-122} +9 q^{-124} -16 q^{-126} +10 q^{-128} -3 q^{-130} -12 q^{-132} +18 q^{-134} -20 q^{-136} +15 q^{-138} -10 q^{-140} -9 q^{-142} +13 q^{-144} -16 q^{-146} +13 q^{-148} -9 q^{-150} +2 q^{-152} +3 q^{-154} -4 q^{-156} +6 q^{-158} -6 q^{-160} +4 q^{-162} - q^{-164} + q^{-168} -2 q^{-170} +2 q^{-172} + q^{-176} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-5} +2 q^{-7} - q^{-9} + q^{-11} + q^{-13} +2 q^{-17} -2 q^{-19} - q^{-23} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-8} +4 q^{-12} -2 q^{-14} -3 q^{-16} +7 q^{-18} - q^{-20} -6 q^{-22} +7 q^{-24} + q^{-26} -5 q^{-28} +2 q^{-30} +2 q^{-32} -3 q^{-36} +4 q^{-38} +3 q^{-40} -7 q^{-42} + q^{-44} +5 q^{-46} -7 q^{-48} -2 q^{-50} +4 q^{-52} -3 q^{-54} - q^{-56} +2 q^{-58} + q^{-64} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-11} +2 q^{-15} +2 q^{-17} -2 q^{-19} -3 q^{-21} +4 q^{-23} +7 q^{-25} -4 q^{-27} -10 q^{-29} +2 q^{-31} +17 q^{-33} +2 q^{-35} -20 q^{-37} -6 q^{-39} +21 q^{-41} +12 q^{-43} -20 q^{-45} -14 q^{-47} +17 q^{-49} +15 q^{-51} -9 q^{-53} -14 q^{-55} +3 q^{-57} +9 q^{-59} +3 q^{-61} -9 q^{-63} -9 q^{-65} +6 q^{-67} +15 q^{-69} -2 q^{-71} -20 q^{-73} + q^{-75} +20 q^{-77} +3 q^{-79} -23 q^{-81} -9 q^{-83} +16 q^{-85} +13 q^{-87} -16 q^{-89} -13 q^{-91} +8 q^{-93} +14 q^{-95} -2 q^{-97} -10 q^{-99} + q^{-101} +7 q^{-103} +2 q^{-105} -3 q^{-107} + q^{-111} + q^{-113} - q^{-115} - q^{-123} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-18} +2 q^{-22} -3 q^{-24} - q^{-26} +5 q^{-28} +5 q^{-32} -8 q^{-34} -6 q^{-36} +9 q^{-38} +6 q^{-40} +14 q^{-42} -17 q^{-44} -24 q^{-46} + q^{-48} +19 q^{-50} +47 q^{-52} -10 q^{-54} -51 q^{-56} -33 q^{-58} +14 q^{-60} +83 q^{-62} +23 q^{-64} -54 q^{-66} -70 q^{-68} -17 q^{-70} +90 q^{-72} +55 q^{-74} -28 q^{-76} -73 q^{-78} -42 q^{-80} +56 q^{-82} +55 q^{-84} +6 q^{-86} -43 q^{-88} -44 q^{-90} +11 q^{-92} +35 q^{-94} +26 q^{-96} -10 q^{-98} -34 q^{-100} -28 q^{-102} +15 q^{-104} +44 q^{-106} +17 q^{-108} -28 q^{-110} -58 q^{-112} +60 q^{-116} +42 q^{-118} -19 q^{-120} -84 q^{-122} -19 q^{-124} +59 q^{-126} +62 q^{-128} +5 q^{-130} -86 q^{-132} -45 q^{-134} +27 q^{-136} +66 q^{-138} +43 q^{-140} -53 q^{-142} -52 q^{-144} -10 q^{-146} +38 q^{-148} +55 q^{-150} -8 q^{-152} -29 q^{-154} -28 q^{-156} +2 q^{-158} +32 q^{-160} +9 q^{-162} -4 q^{-164} -16 q^{-166} -9 q^{-168} +8 q^{-170} +3 q^{-172} +4 q^{-174} -3 q^{-176} -4 q^{-178} + q^{-180} -2 q^{-182} +2 q^{-184} - q^{-188} + q^{-190} - q^{-192} + q^{-200} } |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 10"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-8 t+9-8 t^{-1} +4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^{10}-3 q^9+5 q^8-5 q^7+6 q^6-5 q^5+4 q^4-2 q^3+q^2} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-4} +2 z^4 a^{-6} +z^4 a^{-8} +2 z^2 a^{-4} +5 z^2 a^{-6} +2 z^2 a^{-8} -z^2 a^{-10} +2 a^{-6} + a^{-8} -2 a^{-10} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} +2 z^5 a^{-5} -3 z^5 a^{-7} -7 z^5 a^{-9} -z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +9 z^4 a^{-10} -2 z^4 a^{-12} -3 z^3 a^{-5} +3 z^3 a^{-7} +9 z^3 a^{-9} -z^3 a^{-11} -4 z^3 a^{-13} -2 z^2 a^{-4} +7 z^2 a^{-6} -2 z^2 a^{-8} -11 z^2 a^{-10} -4 z a^{-9} +4 z a^{-13} -2 a^{-6} + a^{-8} +2 a^{-10} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 10"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (8, 22) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 9 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{31}-q^{30}+3 q^{28}-4 q^{27}-2 q^{26}+10 q^{25}-10 q^{24}-7 q^{23}+22 q^{22}-14 q^{21}-15 q^{20}+32 q^{19}-13 q^{18}-22 q^{17}+35 q^{16}-11 q^{15}-22 q^{14}+28 q^{13}-5 q^{12}-16 q^{11}+15 q^{10}-8 q^8+5 q^7+q^6-2 q^5+q^4} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{60}+q^{59}-2 q^{56}+3 q^{55}-q^{53}-5 q^{52}+8 q^{51}+5 q^{50}-7 q^{49}-16 q^{48}+16 q^{47}+21 q^{46}-13 q^{45}-37 q^{44}+13 q^{43}+50 q^{42}-10 q^{41}-62 q^{40}-q^{39}+76 q^{38}+7 q^{37}-81 q^{36}-22 q^{35}+94 q^{34}+24 q^{33}-90 q^{32}-37 q^{31}+94 q^{30}+36 q^{29}-84 q^{28}-43 q^{27}+77 q^{26}+41 q^{25}-60 q^{24}-41 q^{23}+46 q^{22}+35 q^{21}-28 q^{20}-32 q^{19}+19 q^{18}+21 q^{17}-6 q^{16}-17 q^{15}+4 q^{14}+9 q^{13}-6 q^{11}+q^{10}+2 q^9+q^8-2 q^7+q^6} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-q^{97}-q^{94}+3 q^{93}-3 q^{92}+q^{91}+2 q^{90}-5 q^{89}+6 q^{88}-8 q^{87}+2 q^{86}+9 q^{85}-6 q^{84}+11 q^{83}-25 q^{82}-5 q^{81}+21 q^{80}+7 q^{79}+34 q^{78}-55 q^{77}-35 q^{76}+20 q^{75}+28 q^{74}+97 q^{73}-72 q^{72}-83 q^{71}-22 q^{70}+27 q^{69}+193 q^{68}-49 q^{67}-122 q^{66}-94 q^{65}-14 q^{64}+284 q^{63}+8 q^{62}-125 q^{61}-172 q^{60}-79 q^{59}+349 q^{58}+69 q^{57}-107 q^{56}-232 q^{55}-137 q^{54}+379 q^{53}+114 q^{52}-80 q^{51}-261 q^{50}-180 q^{49}+373 q^{48}+138 q^{47}-44 q^{46}-252 q^{45}-204 q^{44}+318 q^{43}+139 q^{42}+5 q^{41}-203 q^{40}-203 q^{39}+220 q^{38}+108 q^{37}+50 q^{36}-120 q^{35}-168 q^{34}+113 q^{33}+55 q^{32}+66 q^{31}-43 q^{30}-108 q^{29}+44 q^{28}+8 q^{27}+48 q^{26}-2 q^{25}-51 q^{24}+16 q^{23}-10 q^{22}+23 q^{21}+5 q^{20}-20 q^{19}+8 q^{18}-7 q^{17}+8 q^{16}+3 q^{15}-7 q^{14}+3 q^{13}-2 q^{12}+2 q^{11}+q^{10}-2 q^9+q^8} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|