9 44: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 44 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-9,5,3,-4,2,7,-8,9,-5,6,-7,8,-6/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=44|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-9,5,3,-4,2,7,-8,9,-5,6,-7,8,-6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 69: | Line 37: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>-q^5+2 q^4+q^3-5 q^2+4 q+4-9 q^{-1} +4 q^{-2} +6 q^{-3} -9 q^{-4} +2 q^{-5} +7 q^{-6} -7 q^{-7} - q^{-8} +7 q^{-9} -4 q^{-10} -3 q^{-11} +5 q^{-12} - q^{-13} -2 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{13}+q^{12}+q^{11}+2 q^{10}-4 q^9-4 q^8+4 q^7+8 q^6-3 q^5-13 q^4+q^3+18 q^2+q-18-5 q^{-1} +20 q^{-2} +6 q^{-3} -18 q^{-4} -8 q^{-5} +17 q^{-6} +7 q^{-7} -13 q^{-8} -9 q^{-9} +11 q^{-10} +8 q^{-11} -5 q^{-12} -10 q^{-13} +3 q^{-14} +8 q^{-15} +3 q^{-16} -8 q^{-17} -6 q^{-18} +5 q^{-19} +8 q^{-20} -2 q^{-21} -8 q^{-22} - q^{-23} +7 q^{-24} +2 q^{-25} -4 q^{-26} -2 q^{-27} + q^{-28} +2 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>-q^5+2 q^4+q^3-5 q^2+4 q+4-9 q^{-1} +4 q^{-2} +6 q^{-3} -9 q^{-4} +2 q^{-5} +7 q^{-6} -7 q^{-7} - q^{-8} +7 q^{-9} -4 q^{-10} -3 q^{-11} +5 q^{-12} - q^{-13} -2 q^{-14} + q^{-15} </math>|J3=<math>-q^{13}+q^{12}+q^{11}+2 q^{10}-4 q^9-4 q^8+4 q^7+8 q^6-3 q^5-13 q^4+q^3+18 q^2+q-18-5 q^{-1} +20 q^{-2} +6 q^{-3} -18 q^{-4} -8 q^{-5} +17 q^{-6} +7 q^{-7} -13 q^{-8} -9 q^{-9} +11 q^{-10} +8 q^{-11} -5 q^{-12} -10 q^{-13} +3 q^{-14} +8 q^{-15} +3 q^{-16} -8 q^{-17} -6 q^{-18} +5 q^{-19} +8 q^{-20} -2 q^{-21} -8 q^{-22} - q^{-23} +7 q^{-24} +2 q^{-25} -4 q^{-26} -2 q^{-27} + q^{-28} +2 q^{-29} - q^{-30} </math>|J4=<math>-q^{22}+q^{21}+2 q^{20}-q^{18}-7 q^{17}-q^{16}+9 q^{15}+9 q^{14}+3 q^{13}-22 q^{12}-17 q^{11}+13 q^{10}+28 q^9+24 q^8-33 q^7-47 q^6+3 q^5+44 q^4+53 q^3-31 q^2-70 q-11+44 q^{-1} +71 q^{-2} -21 q^{-3} -77 q^{-4} -18 q^{-5} +38 q^{-6} +74 q^{-7} -15 q^{-8} -73 q^{-9} -17 q^{-10} +28 q^{-11} +68 q^{-12} -8 q^{-13} -63 q^{-14} -16 q^{-15} +14 q^{-16} +58 q^{-17} +3 q^{-18} -46 q^{-19} -15 q^{-20} -5 q^{-21} +43 q^{-22} +14 q^{-23} -23 q^{-24} -8 q^{-25} -21 q^{-26} +20 q^{-27} +14 q^{-28} -3 q^{-29} +7 q^{-30} -23 q^{-31} +3 q^{-33} +2 q^{-34} +19 q^{-35} -10 q^{-36} -5 q^{-37} -7 q^{-38} -4 q^{-39} +16 q^{-40} -5 q^{-43} -6 q^{-44} +5 q^{-45} + q^{-46} +2 q^{-47} - q^{-48} -2 q^{-49} + q^{-50} </math>|J5=<math>q^{31}-3 q^{29}-2 q^{28}+q^{27}+3 q^{26}+10 q^{25}+5 q^{24}-11 q^{23}-19 q^{22}-14 q^{21}+6 q^{20}+34 q^{19}+40 q^{18}-48 q^{16}-68 q^{15}-24 q^{14}+56 q^{13}+103 q^{12}+59 q^{11}-57 q^{10}-136 q^9-95 q^8+44 q^7+162 q^6+131 q^5-25 q^4-175 q^3-164 q^2+8 q+181+180 q^{-1} +10 q^{-2} -174 q^{-3} -196 q^{-4} -22 q^{-5} +173 q^{-6} +195 q^{-7} +30 q^{-8} -163 q^{-9} -196 q^{-10} -35 q^{-11} +159 q^{-12} +189 q^{-13} +37 q^{-14} -146 q^{-15} -185 q^{-16} -42 q^{-17} +137 q^{-18} +173 q^{-19} +50 q^{-20} -116 q^{-21} -168 q^{-22} -58 q^{-23} +96 q^{-24} +151 q^{-25} +72 q^{-26} -68 q^{-27} -139 q^{-28} -80 q^{-29} +42 q^{-30} +111 q^{-31} +88 q^{-32} -9 q^{-33} -90 q^{-34} -83 q^{-35} -14 q^{-36} +55 q^{-37} +74 q^{-38} +33 q^{-39} -27 q^{-40} -54 q^{-41} -38 q^{-42} +32 q^{-44} +33 q^{-45} +14 q^{-46} -9 q^{-47} -20 q^{-48} -18 q^{-49} -8 q^{-50} +7 q^{-51} +11 q^{-52} +12 q^{-53} +9 q^{-54} -2 q^{-55} -13 q^{-56} -11 q^{-57} -5 q^{-58} +2 q^{-59} +13 q^{-60} +10 q^{-61} -7 q^{-63} -7 q^{-64} -4 q^{-65} +7 q^{-67} +4 q^{-68} - q^{-69} -2 q^{-70} - q^{-71} -2 q^{-72} + q^{-73} +2 q^{-74} - q^{-75} </math>|J6=<math>q^{47}-q^{46}-q^{45}-q^{42}-q^{41}+8 q^{40}+3 q^{39}-2 q^{37}-8 q^{36}-17 q^{35}-16 q^{34}+17 q^{33}+26 q^{32}+31 q^{31}+25 q^{30}-6 q^{29}-65 q^{28}-88 q^{27}-25 q^{26}+31 q^{25}+100 q^{24}+134 q^{23}+82 q^{22}-83 q^{21}-213 q^{20}-173 q^{19}-66 q^{18}+128 q^{17}+297 q^{16}+285 q^{15}+9 q^{14}-288 q^{13}-365 q^{12}-266 q^{11}+47 q^{10}+399 q^9+506 q^8+182 q^7-259 q^6-478 q^5-452 q^4-93 q^3+397 q^2+625 q+328-179 q^{-1} -490 q^{-2} -539 q^{-3} -199 q^{-4} +349 q^{-5} +645 q^{-6} +390 q^{-7} -120 q^{-8} -460 q^{-9} -549 q^{-10} -240 q^{-11} +310 q^{-12} +624 q^{-13} +399 q^{-14} -96 q^{-15} -428 q^{-16} -530 q^{-17} -248 q^{-18} +279 q^{-19} +587 q^{-20} +395 q^{-21} -71 q^{-22} -384 q^{-23} -500 q^{-24} -261 q^{-25} +221 q^{-26} +524 q^{-27} +395 q^{-28} -12 q^{-29} -301 q^{-30} -454 q^{-31} -296 q^{-32} +115 q^{-33} +420 q^{-34} +391 q^{-35} +84 q^{-36} -168 q^{-37} -372 q^{-38} -330 q^{-39} -28 q^{-40} +264 q^{-41} +347 q^{-42} +175 q^{-43} - q^{-44} -234 q^{-45} -311 q^{-46} -151 q^{-47} +75 q^{-48} +231 q^{-49} +193 q^{-50} +135 q^{-51} -59 q^{-52} -203 q^{-53} -182 q^{-54} -74 q^{-55} +73 q^{-56} +109 q^{-57} +163 q^{-58} +67 q^{-59} -51 q^{-60} -105 q^{-61} -105 q^{-62} -29 q^{-63} -11 q^{-64} +85 q^{-65} +76 q^{-66} +36 q^{-67} -7 q^{-68} -43 q^{-69} -22 q^{-70} -58 q^{-71} +2 q^{-72} +16 q^{-73} +25 q^{-74} +18 q^{-75} +8 q^{-76} +25 q^{-77} -28 q^{-78} -10 q^{-79} -16 q^{-80} -6 q^{-81} -7 q^{-82} +2 q^{-83} +33 q^{-84} +7 q^{-86} -5 q^{-87} -6 q^{-88} -15 q^{-89} -10 q^{-90} +12 q^{-91} + q^{-92} +8 q^{-93} +3 q^{-94} +3 q^{-95} -7 q^{-96} -6 q^{-97} +3 q^{-98} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} </math>|J7=<math>q^{63}-q^{62}-q^{61}-q^{60}+2 q^{58}+q^{57}+2 q^{56}+5 q^{55}+q^{54}-5 q^{53}-11 q^{52}-14 q^{51}-3 q^{50}+q^{49}+14 q^{48}+34 q^{47}+36 q^{46}+16 q^{45}-23 q^{44}-66 q^{43}-74 q^{42}-62 q^{41}-14 q^{40}+83 q^{39}+152 q^{38}+166 q^{37}+84 q^{36}-76 q^{35}-217 q^{34}-294 q^{33}-243 q^{32}-15 q^{31}+257 q^{30}+461 q^{29}+466 q^{28}+182 q^{27}-225 q^{26}-602 q^{25}-725 q^{24}-446 q^{23}+93 q^{22}+683 q^{21}+1000 q^{20}+770 q^{19}+109 q^{18}-684 q^{17}-1216 q^{16}-1089 q^{15}-386 q^{14}+595 q^{13}+1362 q^{12}+1380 q^{11}+672 q^{10}-460 q^9-1421 q^8-1593 q^7-911 q^6+284 q^5+1403 q^4+1723 q^3+1113 q^2-125 q-1358-1784 q^{-1} -1228 q^{-2} +3 q^{-3} +1281 q^{-4} +1788 q^{-5} +1300 q^{-6} +89 q^{-7} -1221 q^{-8} -1778 q^{-9} -1318 q^{-10} -135 q^{-11} +1171 q^{-12} +1745 q^{-13} +1319 q^{-14} +163 q^{-15} -1133 q^{-16} -1720 q^{-17} -1309 q^{-18} -173 q^{-19} +1103 q^{-20} +1689 q^{-21} +1291 q^{-22} +187 q^{-23} -1064 q^{-24} -1655 q^{-25} -1278 q^{-26} -208 q^{-27} +1010 q^{-28} +1608 q^{-29} +1266 q^{-30} +250 q^{-31} -934 q^{-32} -1544 q^{-33} -1252 q^{-34} -313 q^{-35} +818 q^{-36} +1456 q^{-37} +1250 q^{-38} +398 q^{-39} -679 q^{-40} -1339 q^{-41} -1222 q^{-42} -503 q^{-43} +484 q^{-44} +1189 q^{-45} +1197 q^{-46} +617 q^{-47} -285 q^{-48} -1000 q^{-49} -1117 q^{-50} -717 q^{-51} +45 q^{-52} +762 q^{-53} +1020 q^{-54} +791 q^{-55} +171 q^{-56} -512 q^{-57} -842 q^{-58} -798 q^{-59} -377 q^{-60} +236 q^{-61} +635 q^{-62} +751 q^{-63} +500 q^{-64} +10 q^{-65} -380 q^{-66} -617 q^{-67} -557 q^{-68} -209 q^{-69} +139 q^{-70} +428 q^{-71} +514 q^{-72} +321 q^{-73} +77 q^{-74} -220 q^{-75} -402 q^{-76} -337 q^{-77} -211 q^{-78} +28 q^{-79} +238 q^{-80} +277 q^{-81} +260 q^{-82} +108 q^{-83} -88 q^{-84} -164 q^{-85} -227 q^{-86} -163 q^{-87} -23 q^{-88} +42 q^{-89} +146 q^{-90} +154 q^{-91} +79 q^{-92} +34 q^{-93} -63 q^{-94} -94 q^{-95} -63 q^{-96} -76 q^{-97} -12 q^{-98} +41 q^{-99} +37 q^{-100} +64 q^{-101} +22 q^{-102} +4 q^{-103} +15 q^{-104} -33 q^{-105} -32 q^{-106} -18 q^{-107} -23 q^{-108} +8 q^{-109} +2 q^{-110} +4 q^{-111} +37 q^{-112} +12 q^{-113} +6 q^{-114} -20 q^{-116} -7 q^{-117} -13 q^{-118} -15 q^{-119} +7 q^{-120} +9 q^{-121} +12 q^{-122} +12 q^{-123} -5 q^{-124} + q^{-125} -3 q^{-126} -10 q^{-127} -3 q^{-128} -2 q^{-129} +4 q^{-130} +6 q^{-131} - q^{-132} +2 q^{-134} -2 q^{-135} - q^{-136} -2 q^{-137} + q^{-138} +2 q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>-q^{22}+q^{21}+2 q^{20}-q^{18}-7 q^{17}-q^{16}+9 q^{15}+9 q^{14}+3 q^{13}-22 q^{12}-17 q^{11}+13 q^{10}+28 q^9+24 q^8-33 q^7-47 q^6+3 q^5+44 q^4+53 q^3-31 q^2-70 q-11+44 q^{-1} +71 q^{-2} -21 q^{-3} -77 q^{-4} -18 q^{-5} +38 q^{-6} +74 q^{-7} -15 q^{-8} -73 q^{-9} -17 q^{-10} +28 q^{-11} +68 q^{-12} -8 q^{-13} -63 q^{-14} -16 q^{-15} +14 q^{-16} +58 q^{-17} +3 q^{-18} -46 q^{-19} -15 q^{-20} -5 q^{-21} +43 q^{-22} +14 q^{-23} -23 q^{-24} -8 q^{-25} -21 q^{-26} +20 q^{-27} +14 q^{-28} -3 q^{-29} +7 q^{-30} -23 q^{-31} +3 q^{-33} +2 q^{-34} +19 q^{-35} -10 q^{-36} -5 q^{-37} -7 q^{-38} -4 q^{-39} +16 q^{-40} -5 q^{-43} -6 q^{-44} +5 q^{-45} + q^{-46} +2 q^{-47} - q^{-48} -2 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>q^{31}-3 q^{29}-2 q^{28}+q^{27}+3 q^{26}+10 q^{25}+5 q^{24}-11 q^{23}-19 q^{22}-14 q^{21}+6 q^{20}+34 q^{19}+40 q^{18}-48 q^{16}-68 q^{15}-24 q^{14}+56 q^{13}+103 q^{12}+59 q^{11}-57 q^{10}-136 q^9-95 q^8+44 q^7+162 q^6+131 q^5-25 q^4-175 q^3-164 q^2+8 q+181+180 q^{-1} +10 q^{-2} -174 q^{-3} -196 q^{-4} -22 q^{-5} +173 q^{-6} +195 q^{-7} +30 q^{-8} -163 q^{-9} -196 q^{-10} -35 q^{-11} +159 q^{-12} +189 q^{-13} +37 q^{-14} -146 q^{-15} -185 q^{-16} -42 q^{-17} +137 q^{-18} +173 q^{-19} +50 q^{-20} -116 q^{-21} -168 q^{-22} -58 q^{-23} +96 q^{-24} +151 q^{-25} +72 q^{-26} -68 q^{-27} -139 q^{-28} -80 q^{-29} +42 q^{-30} +111 q^{-31} +88 q^{-32} -9 q^{-33} -90 q^{-34} -83 q^{-35} -14 q^{-36} +55 q^{-37} +74 q^{-38} +33 q^{-39} -27 q^{-40} -54 q^{-41} -38 q^{-42} +32 q^{-44} +33 q^{-45} +14 q^{-46} -9 q^{-47} -20 q^{-48} -18 q^{-49} -8 q^{-50} +7 q^{-51} +11 q^{-52} +12 q^{-53} +9 q^{-54} -2 q^{-55} -13 q^{-56} -11 q^{-57} -5 q^{-58} +2 q^{-59} +13 q^{-60} +10 q^{-61} -7 q^{-63} -7 q^{-64} -4 q^{-65} +7 q^{-67} +4 q^{-68} - q^{-69} -2 q^{-70} - q^{-71} -2 q^{-72} + q^{-73} +2 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{47}-q^{46}-q^{45}-q^{42}-q^{41}+8 q^{40}+3 q^{39}-2 q^{37}-8 q^{36}-17 q^{35}-16 q^{34}+17 q^{33}+26 q^{32}+31 q^{31}+25 q^{30}-6 q^{29}-65 q^{28}-88 q^{27}-25 q^{26}+31 q^{25}+100 q^{24}+134 q^{23}+82 q^{22}-83 q^{21}-213 q^{20}-173 q^{19}-66 q^{18}+128 q^{17}+297 q^{16}+285 q^{15}+9 q^{14}-288 q^{13}-365 q^{12}-266 q^{11}+47 q^{10}+399 q^9+506 q^8+182 q^7-259 q^6-478 q^5-452 q^4-93 q^3+397 q^2+625 q+328-179 q^{-1} -490 q^{-2} -539 q^{-3} -199 q^{-4} +349 q^{-5} +645 q^{-6} +390 q^{-7} -120 q^{-8} -460 q^{-9} -549 q^{-10} -240 q^{-11} +310 q^{-12} +624 q^{-13} +399 q^{-14} -96 q^{-15} -428 q^{-16} -530 q^{-17} -248 q^{-18} +279 q^{-19} +587 q^{-20} +395 q^{-21} -71 q^{-22} -384 q^{-23} -500 q^{-24} -261 q^{-25} +221 q^{-26} +524 q^{-27} +395 q^{-28} -12 q^{-29} -301 q^{-30} -454 q^{-31} -296 q^{-32} +115 q^{-33} +420 q^{-34} +391 q^{-35} +84 q^{-36} -168 q^{-37} -372 q^{-38} -330 q^{-39} -28 q^{-40} +264 q^{-41} +347 q^{-42} +175 q^{-43} - q^{-44} -234 q^{-45} -311 q^{-46} -151 q^{-47} +75 q^{-48} +231 q^{-49} +193 q^{-50} +135 q^{-51} -59 q^{-52} -203 q^{-53} -182 q^{-54} -74 q^{-55} +73 q^{-56} +109 q^{-57} +163 q^{-58} +67 q^{-59} -51 q^{-60} -105 q^{-61} -105 q^{-62} -29 q^{-63} -11 q^{-64} +85 q^{-65} +76 q^{-66} +36 q^{-67} -7 q^{-68} -43 q^{-69} -22 q^{-70} -58 q^{-71} +2 q^{-72} +16 q^{-73} +25 q^{-74} +18 q^{-75} +8 q^{-76} +25 q^{-77} -28 q^{-78} -10 q^{-79} -16 q^{-80} -6 q^{-81} -7 q^{-82} +2 q^{-83} +33 q^{-84} +7 q^{-86} -5 q^{-87} -6 q^{-88} -15 q^{-89} -10 q^{-90} +12 q^{-91} + q^{-92} +8 q^{-93} +3 q^{-94} +3 q^{-95} -7 q^{-96} -6 q^{-97} +3 q^{-98} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>q^{63}-q^{62}-q^{61}-q^{60}+2 q^{58}+q^{57}+2 q^{56}+5 q^{55}+q^{54}-5 q^{53}-11 q^{52}-14 q^{51}-3 q^{50}+q^{49}+14 q^{48}+34 q^{47}+36 q^{46}+16 q^{45}-23 q^{44}-66 q^{43}-74 q^{42}-62 q^{41}-14 q^{40}+83 q^{39}+152 q^{38}+166 q^{37}+84 q^{36}-76 q^{35}-217 q^{34}-294 q^{33}-243 q^{32}-15 q^{31}+257 q^{30}+461 q^{29}+466 q^{28}+182 q^{27}-225 q^{26}-602 q^{25}-725 q^{24}-446 q^{23}+93 q^{22}+683 q^{21}+1000 q^{20}+770 q^{19}+109 q^{18}-684 q^{17}-1216 q^{16}-1089 q^{15}-386 q^{14}+595 q^{13}+1362 q^{12}+1380 q^{11}+672 q^{10}-460 q^9-1421 q^8-1593 q^7-911 q^6+284 q^5+1403 q^4+1723 q^3+1113 q^2-125 q-1358-1784 q^{-1} -1228 q^{-2} +3 q^{-3} +1281 q^{-4} +1788 q^{-5} +1300 q^{-6} +89 q^{-7} -1221 q^{-8} -1778 q^{-9} -1318 q^{-10} -135 q^{-11} +1171 q^{-12} +1745 q^{-13} +1319 q^{-14} +163 q^{-15} -1133 q^{-16} -1720 q^{-17} -1309 q^{-18} -173 q^{-19} +1103 q^{-20} +1689 q^{-21} +1291 q^{-22} +187 q^{-23} -1064 q^{-24} -1655 q^{-25} -1278 q^{-26} -208 q^{-27} +1010 q^{-28} +1608 q^{-29} +1266 q^{-30} +250 q^{-31} -934 q^{-32} -1544 q^{-33} -1252 q^{-34} -313 q^{-35} +818 q^{-36} +1456 q^{-37} +1250 q^{-38} +398 q^{-39} -679 q^{-40} -1339 q^{-41} -1222 q^{-42} -503 q^{-43} +484 q^{-44} +1189 q^{-45} +1197 q^{-46} +617 q^{-47} -285 q^{-48} -1000 q^{-49} -1117 q^{-50} -717 q^{-51} +45 q^{-52} +762 q^{-53} +1020 q^{-54} +791 q^{-55} +171 q^{-56} -512 q^{-57} -842 q^{-58} -798 q^{-59} -377 q^{-60} +236 q^{-61} +635 q^{-62} +751 q^{-63} +500 q^{-64} +10 q^{-65} -380 q^{-66} -617 q^{-67} -557 q^{-68} -209 q^{-69} +139 q^{-70} +428 q^{-71} +514 q^{-72} +321 q^{-73} +77 q^{-74} -220 q^{-75} -402 q^{-76} -337 q^{-77} -211 q^{-78} +28 q^{-79} +238 q^{-80} +277 q^{-81} +260 q^{-82} +108 q^{-83} -88 q^{-84} -164 q^{-85} -227 q^{-86} -163 q^{-87} -23 q^{-88} +42 q^{-89} +146 q^{-90} +154 q^{-91} +79 q^{-92} +34 q^{-93} -63 q^{-94} -94 q^{-95} -63 q^{-96} -76 q^{-97} -12 q^{-98} +41 q^{-99} +37 q^{-100} +64 q^{-101} +22 q^{-102} +4 q^{-103} +15 q^{-104} -33 q^{-105} -32 q^{-106} -18 q^{-107} -23 q^{-108} +8 q^{-109} +2 q^{-110} +4 q^{-111} +37 q^{-112} +12 q^{-113} +6 q^{-114} -20 q^{-116} -7 q^{-117} -13 q^{-118} -15 q^{-119} +7 q^{-120} +9 q^{-121} +12 q^{-122} +12 q^{-123} -5 q^{-124} + q^{-125} -3 q^{-126} -10 q^{-127} -3 q^{-128} -2 q^{-129} +4 q^{-130} +6 q^{-131} - q^{-132} +2 q^{-134} -2 q^{-135} - q^{-136} -2 q^{-137} + q^{-138} +2 q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 44]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], |
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], |
||
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></ |
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 44]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 44]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, -14, 2, -16, -6, -18, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 44]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_44_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 44]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 44]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 44]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 44]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 44]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_44_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 44]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, {4, 5}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 44]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 2 |
|||
7 + t - - - 4 t + t |
7 + t - - - 4 t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 44]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 44]][z]</nowiki></code></td></tr> |
|||
1 + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 |
|||
1 + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{17, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 2 3 3 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 44]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{17, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 44]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 2 3 3 2 |
|||
3 - q + -- - -- + -- - - - 2 q + q |
3 - q + -- - -- + -- - - - 2 q + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 44]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 44]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 44]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 2 -6 -4 4 6 8 |
|||
-1 - q + -- + q + q - q + q + q |
-1 - q + -- + q + q - q + q + q |
||
8 |
8 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 44]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 44]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 4 2 2 2 4 2 2 4 |
|||
-2 + a + 3 a - a - 2 z + 3 a z - a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 44]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 4 z 3 5 2 z 2 2 |
-2 2 4 z 3 5 2 z 2 2 |
||
-2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z + |
-2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z + |
||
Line 159: | Line 201: | ||
3 7 |
3 7 |
||
a z</nowiki></ |
a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 44]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 44]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 1 1 2 1 |
|||
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 173: | Line 223: | ||
---- + --- + q t + q t + q t |
---- + --- + q t + q t + q t |
||
3 q t |
3 q t |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 44], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 44], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 -13 5 3 4 7 -8 7 7 2 |
|||
4 + q - --- - q + --- - --- - --- + -- - q - -- + -- + -- - |
4 + q - --- - q + --- - --- - --- + -- - q - -- + -- + -- - |
||
14 12 11 10 9 7 6 5 |
14 12 11 10 9 7 6 5 |
||
Line 184: | Line 238: | ||
-- + -- + -- - - + 4 q - 5 q + q + 2 q - q |
-- + -- + -- - - + 4 q - 5 q + q + 2 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 44's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
Gauss code | -1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6 |
Dowker-Thistlethwaite code | 4 8 10 -14 2 -16 -6 -18 -12 |
Conway Notation | [22,21,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{10, 3}, {1, 7}, {8, 4}, {7, 10}, {6, 9}, {3, 8}, {2, 5}, {4, 6}, {5, 1}, {9, 2}] |
[edit Notes on presentations of 9 44]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 -14 2 -16 -6 -18 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 3}, {1, 7}, {8, 4}, {7, 10}, {6, 9}, {3, 8}, {2, 5}, {4, 6}, {5, 1}, {9, 2}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
[edit Notes for 9 44's three dimensional invariants] 9_44 has girth 4. See arXiv:math.GT/0508590 and a forthcoming paper by the same authors. |
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|