9 44: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=9_44}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 9 |
k = 44 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-9,5,3,-4,2,7,-8,9,-5,6,-7,8,-6/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 9 |
braid_width = 4 |
braid_index = 4 |
same_alexander = |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=16.6667%>&chi;</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math>-q^5+2 q^4+q^3-5 q^2+4 q+4-9 q^{-1} +4 q^{-2} +6 q^{-3} -9 q^{-4} +2 q^{-5} +7 q^{-6} -7 q^{-7} - q^{-8} +7 q^{-9} -4 q^{-10} -3 q^{-11} +5 q^{-12} - q^{-13} -2 q^{-14} + q^{-15} </math> |
coloured_jones_3 = <math>-q^{13}+q^{12}+q^{11}+2 q^{10}-4 q^9-4 q^8+4 q^7+8 q^6-3 q^5-13 q^4+q^3+18 q^2+q-18-5 q^{-1} +20 q^{-2} +6 q^{-3} -18 q^{-4} -8 q^{-5} +17 q^{-6} +7 q^{-7} -13 q^{-8} -9 q^{-9} +11 q^{-10} +8 q^{-11} -5 q^{-12} -10 q^{-13} +3 q^{-14} +8 q^{-15} +3 q^{-16} -8 q^{-17} -6 q^{-18} +5 q^{-19} +8 q^{-20} -2 q^{-21} -8 q^{-22} - q^{-23} +7 q^{-24} +2 q^{-25} -4 q^{-26} -2 q^{-27} + q^{-28} +2 q^{-29} - q^{-30} </math> |
coloured_jones_4 = <math>-q^{22}+q^{21}+2 q^{20}-q^{18}-7 q^{17}-q^{16}+9 q^{15}+9 q^{14}+3 q^{13}-22 q^{12}-17 q^{11}+13 q^{10}+28 q^9+24 q^8-33 q^7-47 q^6+3 q^5+44 q^4+53 q^3-31 q^2-70 q-11+44 q^{-1} +71 q^{-2} -21 q^{-3} -77 q^{-4} -18 q^{-5} +38 q^{-6} +74 q^{-7} -15 q^{-8} -73 q^{-9} -17 q^{-10} +28 q^{-11} +68 q^{-12} -8 q^{-13} -63 q^{-14} -16 q^{-15} +14 q^{-16} +58 q^{-17} +3 q^{-18} -46 q^{-19} -15 q^{-20} -5 q^{-21} +43 q^{-22} +14 q^{-23} -23 q^{-24} -8 q^{-25} -21 q^{-26} +20 q^{-27} +14 q^{-28} -3 q^{-29} +7 q^{-30} -23 q^{-31} +3 q^{-33} +2 q^{-34} +19 q^{-35} -10 q^{-36} -5 q^{-37} -7 q^{-38} -4 q^{-39} +16 q^{-40} -5 q^{-43} -6 q^{-44} +5 q^{-45} + q^{-46} +2 q^{-47} - q^{-48} -2 q^{-49} + q^{-50} </math> |
coloured_jones_5 = <math>q^{31}-3 q^{29}-2 q^{28}+q^{27}+3 q^{26}+10 q^{25}+5 q^{24}-11 q^{23}-19 q^{22}-14 q^{21}+6 q^{20}+34 q^{19}+40 q^{18}-48 q^{16}-68 q^{15}-24 q^{14}+56 q^{13}+103 q^{12}+59 q^{11}-57 q^{10}-136 q^9-95 q^8+44 q^7+162 q^6+131 q^5-25 q^4-175 q^3-164 q^2+8 q+181+180 q^{-1} +10 q^{-2} -174 q^{-3} -196 q^{-4} -22 q^{-5} +173 q^{-6} +195 q^{-7} +30 q^{-8} -163 q^{-9} -196 q^{-10} -35 q^{-11} +159 q^{-12} +189 q^{-13} +37 q^{-14} -146 q^{-15} -185 q^{-16} -42 q^{-17} +137 q^{-18} +173 q^{-19} +50 q^{-20} -116 q^{-21} -168 q^{-22} -58 q^{-23} +96 q^{-24} +151 q^{-25} +72 q^{-26} -68 q^{-27} -139 q^{-28} -80 q^{-29} +42 q^{-30} +111 q^{-31} +88 q^{-32} -9 q^{-33} -90 q^{-34} -83 q^{-35} -14 q^{-36} +55 q^{-37} +74 q^{-38} +33 q^{-39} -27 q^{-40} -54 q^{-41} -38 q^{-42} +32 q^{-44} +33 q^{-45} +14 q^{-46} -9 q^{-47} -20 q^{-48} -18 q^{-49} -8 q^{-50} +7 q^{-51} +11 q^{-52} +12 q^{-53} +9 q^{-54} -2 q^{-55} -13 q^{-56} -11 q^{-57} -5 q^{-58} +2 q^{-59} +13 q^{-60} +10 q^{-61} -7 q^{-63} -7 q^{-64} -4 q^{-65} +7 q^{-67} +4 q^{-68} - q^{-69} -2 q^{-70} - q^{-71} -2 q^{-72} + q^{-73} +2 q^{-74} - q^{-75} </math> |
coloured_jones_6 = <math>q^{47}-q^{46}-q^{45}-q^{42}-q^{41}+8 q^{40}+3 q^{39}-2 q^{37}-8 q^{36}-17 q^{35}-16 q^{34}+17 q^{33}+26 q^{32}+31 q^{31}+25 q^{30}-6 q^{29}-65 q^{28}-88 q^{27}-25 q^{26}+31 q^{25}+100 q^{24}+134 q^{23}+82 q^{22}-83 q^{21}-213 q^{20}-173 q^{19}-66 q^{18}+128 q^{17}+297 q^{16}+285 q^{15}+9 q^{14}-288 q^{13}-365 q^{12}-266 q^{11}+47 q^{10}+399 q^9+506 q^8+182 q^7-259 q^6-478 q^5-452 q^4-93 q^3+397 q^2+625 q+328-179 q^{-1} -490 q^{-2} -539 q^{-3} -199 q^{-4} +349 q^{-5} +645 q^{-6} +390 q^{-7} -120 q^{-8} -460 q^{-9} -549 q^{-10} -240 q^{-11} +310 q^{-12} +624 q^{-13} +399 q^{-14} -96 q^{-15} -428 q^{-16} -530 q^{-17} -248 q^{-18} +279 q^{-19} +587 q^{-20} +395 q^{-21} -71 q^{-22} -384 q^{-23} -500 q^{-24} -261 q^{-25} +221 q^{-26} +524 q^{-27} +395 q^{-28} -12 q^{-29} -301 q^{-30} -454 q^{-31} -296 q^{-32} +115 q^{-33} +420 q^{-34} +391 q^{-35} +84 q^{-36} -168 q^{-37} -372 q^{-38} -330 q^{-39} -28 q^{-40} +264 q^{-41} +347 q^{-42} +175 q^{-43} - q^{-44} -234 q^{-45} -311 q^{-46} -151 q^{-47} +75 q^{-48} +231 q^{-49} +193 q^{-50} +135 q^{-51} -59 q^{-52} -203 q^{-53} -182 q^{-54} -74 q^{-55} +73 q^{-56} +109 q^{-57} +163 q^{-58} +67 q^{-59} -51 q^{-60} -105 q^{-61} -105 q^{-62} -29 q^{-63} -11 q^{-64} +85 q^{-65} +76 q^{-66} +36 q^{-67} -7 q^{-68} -43 q^{-69} -22 q^{-70} -58 q^{-71} +2 q^{-72} +16 q^{-73} +25 q^{-74} +18 q^{-75} +8 q^{-76} +25 q^{-77} -28 q^{-78} -10 q^{-79} -16 q^{-80} -6 q^{-81} -7 q^{-82} +2 q^{-83} +33 q^{-84} +7 q^{-86} -5 q^{-87} -6 q^{-88} -15 q^{-89} -10 q^{-90} +12 q^{-91} + q^{-92} +8 q^{-93} +3 q^{-94} +3 q^{-95} -7 q^{-96} -6 q^{-97} +3 q^{-98} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} </math> |
coloured_jones_7 = <math>q^{63}-q^{62}-q^{61}-q^{60}+2 q^{58}+q^{57}+2 q^{56}+5 q^{55}+q^{54}-5 q^{53}-11 q^{52}-14 q^{51}-3 q^{50}+q^{49}+14 q^{48}+34 q^{47}+36 q^{46}+16 q^{45}-23 q^{44}-66 q^{43}-74 q^{42}-62 q^{41}-14 q^{40}+83 q^{39}+152 q^{38}+166 q^{37}+84 q^{36}-76 q^{35}-217 q^{34}-294 q^{33}-243 q^{32}-15 q^{31}+257 q^{30}+461 q^{29}+466 q^{28}+182 q^{27}-225 q^{26}-602 q^{25}-725 q^{24}-446 q^{23}+93 q^{22}+683 q^{21}+1000 q^{20}+770 q^{19}+109 q^{18}-684 q^{17}-1216 q^{16}-1089 q^{15}-386 q^{14}+595 q^{13}+1362 q^{12}+1380 q^{11}+672 q^{10}-460 q^9-1421 q^8-1593 q^7-911 q^6+284 q^5+1403 q^4+1723 q^3+1113 q^2-125 q-1358-1784 q^{-1} -1228 q^{-2} +3 q^{-3} +1281 q^{-4} +1788 q^{-5} +1300 q^{-6} +89 q^{-7} -1221 q^{-8} -1778 q^{-9} -1318 q^{-10} -135 q^{-11} +1171 q^{-12} +1745 q^{-13} +1319 q^{-14} +163 q^{-15} -1133 q^{-16} -1720 q^{-17} -1309 q^{-18} -173 q^{-19} +1103 q^{-20} +1689 q^{-21} +1291 q^{-22} +187 q^{-23} -1064 q^{-24} -1655 q^{-25} -1278 q^{-26} -208 q^{-27} +1010 q^{-28} +1608 q^{-29} +1266 q^{-30} +250 q^{-31} -934 q^{-32} -1544 q^{-33} -1252 q^{-34} -313 q^{-35} +818 q^{-36} +1456 q^{-37} +1250 q^{-38} +398 q^{-39} -679 q^{-40} -1339 q^{-41} -1222 q^{-42} -503 q^{-43} +484 q^{-44} +1189 q^{-45} +1197 q^{-46} +617 q^{-47} -285 q^{-48} -1000 q^{-49} -1117 q^{-50} -717 q^{-51} +45 q^{-52} +762 q^{-53} +1020 q^{-54} +791 q^{-55} +171 q^{-56} -512 q^{-57} -842 q^{-58} -798 q^{-59} -377 q^{-60} +236 q^{-61} +635 q^{-62} +751 q^{-63} +500 q^{-64} +10 q^{-65} -380 q^{-66} -617 q^{-67} -557 q^{-68} -209 q^{-69} +139 q^{-70} +428 q^{-71} +514 q^{-72} +321 q^{-73} +77 q^{-74} -220 q^{-75} -402 q^{-76} -337 q^{-77} -211 q^{-78} +28 q^{-79} +238 q^{-80} +277 q^{-81} +260 q^{-82} +108 q^{-83} -88 q^{-84} -164 q^{-85} -227 q^{-86} -163 q^{-87} -23 q^{-88} +42 q^{-89} +146 q^{-90} +154 q^{-91} +79 q^{-92} +34 q^{-93} -63 q^{-94} -94 q^{-95} -63 q^{-96} -76 q^{-97} -12 q^{-98} +41 q^{-99} +37 q^{-100} +64 q^{-101} +22 q^{-102} +4 q^{-103} +15 q^{-104} -33 q^{-105} -32 q^{-106} -18 q^{-107} -23 q^{-108} +8 q^{-109} +2 q^{-110} +4 q^{-111} +37 q^{-112} +12 q^{-113} +6 q^{-114} -20 q^{-116} -7 q^{-117} -13 q^{-118} -15 q^{-119} +7 q^{-120} +9 q^{-121} +12 q^{-122} +12 q^{-123} -5 q^{-124} + q^{-125} -3 q^{-126} -10 q^{-127} -3 q^{-128} -2 q^{-129} +4 q^{-130} +6 q^{-131} - q^{-132} +2 q^{-134} -2 q^{-135} - q^{-136} -2 q^{-137} + q^{-138} +2 q^{-139} - q^{-140} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 44]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 44]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 44]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, -14, 2, -16, -6, -18, -12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 44]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 44]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 44]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_44_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 44]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, {4, 5}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 44]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 2
7 + t - - - 4 t + t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 44]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4
1 + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 44]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{17, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 44]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 2 3 3 2
3 - q + -- - -- + -- - - - 2 q + q
4 3 2 q
q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 44]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 44]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 2 -6 -4 4 6 8
-1 - q + -- + q + q - q + q + q
8
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 44]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 4 2 2 2 4 2 2 4
-2 + a + 3 a - a - 2 z + 3 a z - a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 44]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-2 2 4 z 3 5 2 z 2 2
-2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z +
a 2
a
3
4 2 2 z 3 3 3 5 3 4 2 4
5 a z + ---- + 4 a z - a z - 3 a z - 3 z - 10 a z -
a
4 4 5 3 5 5 5 6 2 6 4 6 7
7 a z - 3 a z - 2 a z + a z + z + 3 a z + 2 a z + a z +
3 7
a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 44]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 1 1 2 1
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
1 2 3 5 2
---- + --- + q t + q t + q t
3 q t
q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 44], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 -13 5 3 4 7 -8 7 7 2
4 + q - --- - q + --- - --- - --- + -- - q - -- + -- + -- -
14 12 11 10 9 7 6 5
q q q q q q q q
9 6 4 9 2 3 4 5
-- + -- + -- - - + 4 q - 5 q + q + 2 q - q
4 3 2 q
q q q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:04, 1 September 2005

9 43.gif

9_43

9 45.gif

9_45

9 44.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 44's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 44 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13
Gauss code -1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6
Dowker-Thistlethwaite code 4 8 10 -14 2 -16 -6 -18 -12
Conway Notation [22,21,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 44 ML.gif 9 44 AP.gif
[{10, 3}, {1, 7}, {8, 4}, {7, 10}, {6, 9}, {3, 8}, {2, 5}, {4, 6}, {5, 1}, {9, 2}]

[edit Notes on presentations of 9 44]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-3]
Hyperbolic Volume 7.40677
A-Polynomial See Data:9 44/A-polynomial

[edit Notes for 9 44's three dimensional invariants] 9_44 has girth 4. See arXiv:math.GT/0508590 and a forthcoming paper by the same authors.

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 44's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 17, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012χ
5       11
3      1 -1
1     21 1
-1    22  0
-3   11   0
-5  12    1
-7 11     0
-9 1      1
-111       -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials