10 51: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 45: | Line 45: | ||
coloured_jones_4 = <math>q^{74}-2 q^{73}+q^{72}+q^{71}-3 q^{70}+5 q^{69}-7 q^{68}+6 q^{67}+6 q^{66}-18 q^{65}+10 q^{64}-18 q^{63}+30 q^{62}+36 q^{61}-58 q^{60}-16 q^{59}-71 q^{58}+97 q^{57}+165 q^{56}-77 q^{55}-107 q^{54}-297 q^{53}+131 q^{52}+472 q^{51}+102 q^{50}-153 q^{49}-810 q^{48}-107 q^{47}+825 q^{46}+621 q^{45}+137 q^{44}-1464 q^{43}-779 q^{42}+905 q^{41}+1327 q^{40}+906 q^{39}-1914 q^{38}-1695 q^{37}+544 q^{36}+1882 q^{35}+1935 q^{34}-1974 q^{33}-2487 q^{32}-85 q^{31}+2090 q^{30}+2841 q^{29}-1715 q^{28}-2921 q^{27}-726 q^{26}+1967 q^{25}+3402 q^{24}-1264 q^{23}-2958 q^{22}-1252 q^{21}+1567 q^{20}+3546 q^{19}-663 q^{18}-2585 q^{17}-1620 q^{16}+904 q^{15}+3246 q^{14}+q^{13}-1824 q^{12}-1706 q^{11}+115 q^{10}+2494 q^9+490 q^8-871 q^7-1397 q^6-478 q^5+1498 q^4+582 q^3-113 q^2-817 q-626+648 q^{-1} +360 q^{-2} +201 q^{-3} -308 q^{-4} -433 q^{-5} +194 q^{-6} +113 q^{-7} +179 q^{-8} -58 q^{-9} -195 q^{-10} +46 q^{-11} +5 q^{-12} +80 q^{-13} +2 q^{-14} -64 q^{-15} +15 q^{-16} -9 q^{-17} +22 q^{-18} +4 q^{-19} -16 q^{-20} +5 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
coloured_jones_4 = <math>q^{74}-2 q^{73}+q^{72}+q^{71}-3 q^{70}+5 q^{69}-7 q^{68}+6 q^{67}+6 q^{66}-18 q^{65}+10 q^{64}-18 q^{63}+30 q^{62}+36 q^{61}-58 q^{60}-16 q^{59}-71 q^{58}+97 q^{57}+165 q^{56}-77 q^{55}-107 q^{54}-297 q^{53}+131 q^{52}+472 q^{51}+102 q^{50}-153 q^{49}-810 q^{48}-107 q^{47}+825 q^{46}+621 q^{45}+137 q^{44}-1464 q^{43}-779 q^{42}+905 q^{41}+1327 q^{40}+906 q^{39}-1914 q^{38}-1695 q^{37}+544 q^{36}+1882 q^{35}+1935 q^{34}-1974 q^{33}-2487 q^{32}-85 q^{31}+2090 q^{30}+2841 q^{29}-1715 q^{28}-2921 q^{27}-726 q^{26}+1967 q^{25}+3402 q^{24}-1264 q^{23}-2958 q^{22}-1252 q^{21}+1567 q^{20}+3546 q^{19}-663 q^{18}-2585 q^{17}-1620 q^{16}+904 q^{15}+3246 q^{14}+q^{13}-1824 q^{12}-1706 q^{11}+115 q^{10}+2494 q^9+490 q^8-871 q^7-1397 q^6-478 q^5+1498 q^4+582 q^3-113 q^2-817 q-626+648 q^{-1} +360 q^{-2} +201 q^{-3} -308 q^{-4} -433 q^{-5} +194 q^{-6} +113 q^{-7} +179 q^{-8} -58 q^{-9} -195 q^{-10} +46 q^{-11} +5 q^{-12} +80 q^{-13} +2 q^{-14} -64 q^{-15} +15 q^{-16} -9 q^{-17} +22 q^{-18} +4 q^{-19} -16 q^{-20} +5 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
||
coloured_jones_5 = <math>-q^{110}+2 q^{109}-q^{108}-q^{107}+3 q^{106}-q^{105}-5 q^{104}+5 q^{103}-q^{102}-4 q^{101}+12 q^{100}+4 q^{99}-20 q^{98}-3 q^{97}-6 q^{96}-q^{95}+46 q^{94}+41 q^{93}-34 q^{92}-70 q^{91}-85 q^{90}-26 q^{89}+155 q^{88}+229 q^{87}+73 q^{86}-189 q^{85}-425 q^{84}-338 q^{83}+207 q^{82}+727 q^{81}+704 q^{80}+35 q^{79}-992 q^{78}-1426 q^{77}-510 q^{76}+1138 q^{75}+2191 q^{74}+1521 q^{73}-863 q^{72}-3137 q^{71}-2911 q^{70}+94 q^{69}+3721 q^{68}+4722 q^{67}+1447 q^{66}-3942 q^{65}-6642 q^{64}-3589 q^{63}+3408 q^{62}+8403 q^{61}+6285 q^{60}-2136 q^{59}-9753 q^{58}-9193 q^{57}+196 q^{56}+10485 q^{55}+11995 q^{54}+2272 q^{53}-10599 q^{52}-14488 q^{51}-4862 q^{50}+10089 q^{49}+16448 q^{48}+7479 q^{47}-9233 q^{46}-17880 q^{45}-9708 q^{44}+8016 q^{43}+18729 q^{42}+11780 q^{41}-6840 q^{40}-19175 q^{39}-13224 q^{38}+5408 q^{37}+19124 q^{36}+14640 q^{35}-4122 q^{34}-18820 q^{33}-15406 q^{32}+2515 q^{31}+17958 q^{30}+16248 q^{29}-967 q^{28}-16783 q^{27}-16419 q^{26}-911 q^{25}+14948 q^{24}+16472 q^{23}+2703 q^{22}-12725 q^{21}-15723 q^{20}-4535 q^{19}+9954 q^{18}+14594 q^{17}+5928 q^{16}-7036 q^{15}-12643 q^{14}-6908 q^{13}+4095 q^{12}+10368 q^{11}+7118 q^{10}-1574 q^9-7706 q^8-6686 q^7-406 q^6+5202 q^5+5671 q^4+1575 q^3-2983 q^2-4327 q-2072+1315 q^{-1} +2979 q^{-2} +1991 q^{-3} -270 q^{-4} -1786 q^{-5} -1585 q^{-6} -280 q^{-7} +913 q^{-8} +1117 q^{-9} +419 q^{-10} -373 q^{-11} -664 q^{-12} -384 q^{-13} +94 q^{-14} +351 q^{-15} +270 q^{-16} +16 q^{-17} -166 q^{-18} -164 q^{-19} -25 q^{-20} +63 q^{-21} +75 q^{-22} +38 q^{-23} -28 q^{-24} -47 q^{-25} -8 q^{-26} +16 q^{-27} +5 q^{-28} +11 q^{-29} +2 q^{-30} -17 q^{-31} +8 q^{-33} -2 q^{-34} +3 q^{-36} -4 q^{-37} - q^{-38} +3 q^{-39} - q^{-40} </math> | |
coloured_jones_5 = <math>-q^{110}+2 q^{109}-q^{108}-q^{107}+3 q^{106}-q^{105}-5 q^{104}+5 q^{103}-q^{102}-4 q^{101}+12 q^{100}+4 q^{99}-20 q^{98}-3 q^{97}-6 q^{96}-q^{95}+46 q^{94}+41 q^{93}-34 q^{92}-70 q^{91}-85 q^{90}-26 q^{89}+155 q^{88}+229 q^{87}+73 q^{86}-189 q^{85}-425 q^{84}-338 q^{83}+207 q^{82}+727 q^{81}+704 q^{80}+35 q^{79}-992 q^{78}-1426 q^{77}-510 q^{76}+1138 q^{75}+2191 q^{74}+1521 q^{73}-863 q^{72}-3137 q^{71}-2911 q^{70}+94 q^{69}+3721 q^{68}+4722 q^{67}+1447 q^{66}-3942 q^{65}-6642 q^{64}-3589 q^{63}+3408 q^{62}+8403 q^{61}+6285 q^{60}-2136 q^{59}-9753 q^{58}-9193 q^{57}+196 q^{56}+10485 q^{55}+11995 q^{54}+2272 q^{53}-10599 q^{52}-14488 q^{51}-4862 q^{50}+10089 q^{49}+16448 q^{48}+7479 q^{47}-9233 q^{46}-17880 q^{45}-9708 q^{44}+8016 q^{43}+18729 q^{42}+11780 q^{41}-6840 q^{40}-19175 q^{39}-13224 q^{38}+5408 q^{37}+19124 q^{36}+14640 q^{35}-4122 q^{34}-18820 q^{33}-15406 q^{32}+2515 q^{31}+17958 q^{30}+16248 q^{29}-967 q^{28}-16783 q^{27}-16419 q^{26}-911 q^{25}+14948 q^{24}+16472 q^{23}+2703 q^{22}-12725 q^{21}-15723 q^{20}-4535 q^{19}+9954 q^{18}+14594 q^{17}+5928 q^{16}-7036 q^{15}-12643 q^{14}-6908 q^{13}+4095 q^{12}+10368 q^{11}+7118 q^{10}-1574 q^9-7706 q^8-6686 q^7-406 q^6+5202 q^5+5671 q^4+1575 q^3-2983 q^2-4327 q-2072+1315 q^{-1} +2979 q^{-2} +1991 q^{-3} -270 q^{-4} -1786 q^{-5} -1585 q^{-6} -280 q^{-7} +913 q^{-8} +1117 q^{-9} +419 q^{-10} -373 q^{-11} -664 q^{-12} -384 q^{-13} +94 q^{-14} +351 q^{-15} +270 q^{-16} +16 q^{-17} -166 q^{-18} -164 q^{-19} -25 q^{-20} +63 q^{-21} +75 q^{-22} +38 q^{-23} -28 q^{-24} -47 q^{-25} -8 q^{-26} +16 q^{-27} +5 q^{-28} +11 q^{-29} +2 q^{-30} -17 q^{-31} +8 q^{-33} -2 q^{-34} +3 q^{-36} -4 q^{-37} - q^{-38} +3 q^{-39} - q^{-40} </math> | |
||
coloured_jones_6 = |
coloured_jones_6 = | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 51]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 51]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14], |
|||
X[15, 7, 16, 6], X[13, 1, 14, 20], X[19, 11, 20, 10], |
X[15, 7, 16, 6], X[13, 1, 14, 20], X[19, 11, 20, 10], |
||
X[11, 19, 12, 18], X[17, 13, 18, 12], X[7, 2, 8, 3]]</nowiki></ |
X[11, 19, 12, 18], X[17, 13, 18, 12], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 51]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 51]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9, |
|||
8, -7, 6]</nowiki></ |
8, -7, 6]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 51]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 2, 16, 18, 20, 6, 12, 10]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 51]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 2, 16, 18, 20, 6, 12, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 51]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_51_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 51]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 2, -1, 2, 2, -3, 2, 2, -3, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 51]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 51]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_51_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 51]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 51]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 7 15 2 3 |
|||
-19 + -- - -- + -- + 15 t - 7 t + 2 t |
-19 + -- - -- + -- + 15 t - 7 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 51]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 5 z + 5 z + 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 51]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 51]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 5 z + 5 z + 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 51]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 51]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 51]], KnotSignature[Knot[10, 51]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{67, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 51]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
-6 - q + - + 9 q - 10 q + 12 q - 10 q + 8 q - 5 q + 2 q - q |
-6 - q + - + 9 q - 10 q + 12 q - 10 q + 8 q - 5 q + 2 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 51]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 51]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 51]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 -2 2 4 6 8 10 12 14 |
|||
-1 - q + q - q + 2 q - 2 q + 3 q + q + 2 q + 3 q - q + |
-1 - q + q - q + 2 q - 2 q + 3 q + q + 2 q + 3 q - q + |
||
16 18 20 24 |
16 18 20 24 |
||
2 q - 2 q - 2 q - q</nowiki></ |
2 q - 2 q - 2 q - q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 51]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 51]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 |
|||
3 4 -2 2 3 z 7 z 3 z 4 z 4 z |
3 4 -2 2 3 z 7 z 3 z 4 z 4 z |
||
-1 - -- + -- + a - 2 z - ---- + ---- + ---- - z - -- + ---- + |
-1 - -- + -- + a - 2 z - ---- + ---- + ---- - z - -- + ---- + |
||
Line 113: | Line 194: | ||
---- + -- + -- |
---- + -- + -- |
||
2 4 2 |
2 4 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 51]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 51]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
3 4 -2 2 z 3 z 9 z 5 z 2 z 8 z |
3 4 -2 2 z 3 z 9 z 5 z 2 z 8 z |
||
-1 + -- + -- - a + --- - --- - --- - --- + a z + 3 z + -- - ---- - |
-1 + -- + -- - a + --- - --- - --- - --- + a z + 3 z + -- - ---- - |
||
Line 143: | Line 229: | ||
---- + ---- + -- + -- |
---- + ---- + -- + -- |
||
4 2 5 3 |
4 2 5 3 |
||
a a a a</nowiki></ |
a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 51]], Vassiliev[3][Knot[10, 51]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 8}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 51]], Vassiliev[3][Knot[10, 51]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 8}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 51]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 4 2 q 3 5 |
|||
5 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 4 q t + |
5 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 4 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 156: | Line 252: | ||
13 5 13 6 15 6 17 7 |
13 5 13 6 15 6 17 7 |
||
4 q t + q t + q t + q t</nowiki></ |
4 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 51], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 -5 9 16 -2 34 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 51], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 -5 9 16 -2 34 2 3 |
|||
-37 + q - -- + q + -- - -- - q + -- - 16 q + 73 q - 52 q - |
-37 + q - -- + q + -- - -- - q + -- - 16 q + 73 q - 52 q - |
||
6 4 3 q |
6 4 3 q |
||
Line 170: | Line 271: | ||
20 21 22 23 |
20 21 22 23 |
||
5 q + q - 2 q + q</nowiki></ |
5 q + q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 16:56, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 51's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X9,17,10,16 X5,15,6,14 X15,7,16,6 X13,1,14,20 X19,11,20,10 X11,19,12,18 X17,13,18,12 X7283 |
Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9, 8, -7, 6 |
Dowker-Thistlethwaite code | 4 8 14 2 16 18 20 6 12 10 |
Conway Notation | [32,21,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {12, 3}, {11, 13}, {1, 12}, {13, 2}, {10, 1}] |
[edit Notes on presentations of 10 51]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 51"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X9,17,10,16 X5,15,6,14 X15,7,16,6 X13,1,14,20 X19,11,20,10 X11,19,12,18 X17,13,18,12 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9, 8, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 16 18 20 6 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[32,21,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {12, 3}, {11, 13}, {1, 12}, {13, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 51"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 67, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 51"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (5, 8) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 51. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|