10 66: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 66 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,5,-4,9,-10,2,-7,8,-9,3,-5,4,-6,7,-8,6/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=66|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,5,-4,9,-10,2,-7,8,-9,3,-5,4,-6,7,-8,6/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = [[K11a245]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11a245]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-10</td ><td width=6.66667%>-9</td ><td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-10</td ><td width=6.66667%>-9</td ><td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr>
Line 73: Line 40:
<tr align=center><td>-25</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-25</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-6} -2 q^{-7} + q^{-8} +8 q^{-9} -12 q^{-10} -4 q^{-11} +33 q^{-12} -28 q^{-13} -27 q^{-14} +73 q^{-15} -36 q^{-16} -67 q^{-17} +113 q^{-18} -28 q^{-19} -105 q^{-20} +131 q^{-21} -10 q^{-22} -122 q^{-23} +116 q^{-24} +8 q^{-25} -104 q^{-26} +77 q^{-27} +15 q^{-28} -62 q^{-29} +36 q^{-30} +10 q^{-31} -24 q^{-32} +10 q^{-33} +3 q^{-34} -4 q^{-35} + q^{-36} </math> |

coloured_jones_3 = <math> q^{-9} -2 q^{-10} + q^{-11} +3 q^{-12} +3 q^{-13} -12 q^{-14} -4 q^{-15} +21 q^{-16} +23 q^{-17} -41 q^{-18} -45 q^{-19} +43 q^{-20} +105 q^{-21} -56 q^{-22} -155 q^{-23} +18 q^{-24} +243 q^{-25} +16 q^{-26} -301 q^{-27} -107 q^{-28} +378 q^{-29} +187 q^{-30} -405 q^{-31} -307 q^{-32} +436 q^{-33} +407 q^{-34} -426 q^{-35} -514 q^{-36} +403 q^{-37} +601 q^{-38} -365 q^{-39} -660 q^{-40} +301 q^{-41} +701 q^{-42} -237 q^{-43} -696 q^{-44} +160 q^{-45} +661 q^{-46} -92 q^{-47} -584 q^{-48} +28 q^{-49} +490 q^{-50} +11 q^{-51} -378 q^{-52} -37 q^{-53} +277 q^{-54} +39 q^{-55} -183 q^{-56} -38 q^{-57} +118 q^{-58} +24 q^{-59} -65 q^{-60} -20 q^{-61} +39 q^{-62} +7 q^{-63} -16 q^{-64} -4 q^{-65} +6 q^{-66} +3 q^{-67} -4 q^{-68} + q^{-69} </math> |
{{Display Coloured Jones|J2=<math> q^{-6} -2 q^{-7} + q^{-8} +8 q^{-9} -12 q^{-10} -4 q^{-11} +33 q^{-12} -28 q^{-13} -27 q^{-14} +73 q^{-15} -36 q^{-16} -67 q^{-17} +113 q^{-18} -28 q^{-19} -105 q^{-20} +131 q^{-21} -10 q^{-22} -122 q^{-23} +116 q^{-24} +8 q^{-25} -104 q^{-26} +77 q^{-27} +15 q^{-28} -62 q^{-29} +36 q^{-30} +10 q^{-31} -24 q^{-32} +10 q^{-33} +3 q^{-34} -4 q^{-35} + q^{-36} </math>|J3=<math> q^{-9} -2 q^{-10} + q^{-11} +3 q^{-12} +3 q^{-13} -12 q^{-14} -4 q^{-15} +21 q^{-16} +23 q^{-17} -41 q^{-18} -45 q^{-19} +43 q^{-20} +105 q^{-21} -56 q^{-22} -155 q^{-23} +18 q^{-24} +243 q^{-25} +16 q^{-26} -301 q^{-27} -107 q^{-28} +378 q^{-29} +187 q^{-30} -405 q^{-31} -307 q^{-32} +436 q^{-33} +407 q^{-34} -426 q^{-35} -514 q^{-36} +403 q^{-37} +601 q^{-38} -365 q^{-39} -660 q^{-40} +301 q^{-41} +701 q^{-42} -237 q^{-43} -696 q^{-44} +160 q^{-45} +661 q^{-46} -92 q^{-47} -584 q^{-48} +28 q^{-49} +490 q^{-50} +11 q^{-51} -378 q^{-52} -37 q^{-53} +277 q^{-54} +39 q^{-55} -183 q^{-56} -38 q^{-57} +118 q^{-58} +24 q^{-59} -65 q^{-60} -20 q^{-61} +39 q^{-62} +7 q^{-63} -16 q^{-64} -4 q^{-65} +6 q^{-66} +3 q^{-67} -4 q^{-68} + q^{-69} </math>|J4=<math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} +3 q^{-17} -13 q^{-18} +2 q^{-19} +23 q^{-20} +2 q^{-21} +10 q^{-22} -67 q^{-23} -28 q^{-24} +73 q^{-25} +64 q^{-26} +92 q^{-27} -186 q^{-28} -194 q^{-29} +49 q^{-30} +197 q^{-31} +433 q^{-32} -218 q^{-33} -523 q^{-34} -279 q^{-35} +171 q^{-36} +1072 q^{-37} +138 q^{-38} -726 q^{-39} -962 q^{-40} -378 q^{-41} +1683 q^{-42} +940 q^{-43} -401 q^{-44} -1656 q^{-45} -1497 q^{-46} +1821 q^{-47} +1837 q^{-48} +539 q^{-49} -1946 q^{-50} -2839 q^{-51} +1378 q^{-52} +2444 q^{-53} +1786 q^{-54} -1738 q^{-55} -3999 q^{-56} +578 q^{-57} +2647 q^{-58} +2979 q^{-59} -1198 q^{-60} -4771 q^{-61} -330 q^{-62} +2500 q^{-63} +3893 q^{-64} -478 q^{-65} -5038 q^{-66} -1196 q^{-67} +2008 q^{-68} +4344 q^{-69} +331 q^{-70} -4647 q^{-71} -1809 q^{-72} +1172 q^{-73} +4094 q^{-74} +1037 q^{-75} -3575 q^{-76} -1907 q^{-77} +237 q^{-78} +3138 q^{-79} +1318 q^{-80} -2200 q^{-81} -1430 q^{-82} -368 q^{-83} +1881 q^{-84} +1081 q^{-85} -1070 q^{-86} -731 q^{-87} -479 q^{-88} +878 q^{-89} +616 q^{-90} -441 q^{-91} -230 q^{-92} -312 q^{-93} +333 q^{-94} +255 q^{-95} -175 q^{-96} -30 q^{-97} -135 q^{-98} +110 q^{-99} +80 q^{-100} -66 q^{-101} +9 q^{-102} -42 q^{-103} +29 q^{-104} +20 q^{-105} -19 q^{-106} +4 q^{-107} -8 q^{-108} +6 q^{-109} +3 q^{-110} -4 q^{-111} + q^{-112} </math>|J5=<math> q^{-15} -2 q^{-16} + q^{-17} +3 q^{-18} -2 q^{-19} -2 q^{-20} +2 q^{-21} -7 q^{-22} +3 q^{-23} +20 q^{-24} +5 q^{-25} -17 q^{-26} -17 q^{-27} -40 q^{-28} +2 q^{-29} +81 q^{-30} +93 q^{-31} +6 q^{-32} -95 q^{-33} -217 q^{-34} -146 q^{-35} +145 q^{-36} +388 q^{-37} +358 q^{-38} +8 q^{-39} -589 q^{-40} -807 q^{-41} -294 q^{-42} +631 q^{-43} +1298 q^{-44} +1055 q^{-45} -422 q^{-46} -1881 q^{-47} -1953 q^{-48} -368 q^{-49} +2028 q^{-50} +3311 q^{-51} +1689 q^{-52} -1807 q^{-53} -4307 q^{-54} -3616 q^{-55} +510 q^{-56} +5178 q^{-57} +5833 q^{-58} +1377 q^{-59} -4932 q^{-60} -8010 q^{-61} -4336 q^{-62} +3966 q^{-63} +9713 q^{-64} +7475 q^{-65} -1645 q^{-66} -10611 q^{-67} -10992 q^{-68} -1276 q^{-69} +10504 q^{-70} +13934 q^{-71} +5094 q^{-72} -9441 q^{-73} -16569 q^{-74} -8880 q^{-75} +7555 q^{-76} +18254 q^{-77} +12832 q^{-78} -5102 q^{-79} -19456 q^{-80} -16321 q^{-81} +2389 q^{-82} +19912 q^{-83} +19501 q^{-84} +446 q^{-85} -19991 q^{-86} -22235 q^{-87} -3206 q^{-88} +19703 q^{-89} +24507 q^{-90} +5915 q^{-91} -19023 q^{-92} -26444 q^{-93} -8553 q^{-94} +18043 q^{-95} +27810 q^{-96} +11104 q^{-97} -16437 q^{-98} -28639 q^{-99} -13581 q^{-100} +14359 q^{-101} +28564 q^{-102} +15773 q^{-103} -11583 q^{-104} -27561 q^{-105} -17462 q^{-106} +8386 q^{-107} +25406 q^{-108} +18387 q^{-109} -4942 q^{-110} -22316 q^{-111} -18285 q^{-112} +1738 q^{-113} +18385 q^{-114} +17153 q^{-115} +965 q^{-116} -14217 q^{-117} -15075 q^{-118} -2753 q^{-119} +10117 q^{-120} +12370 q^{-121} +3698 q^{-122} -6640 q^{-123} -9456 q^{-124} -3764 q^{-125} +3899 q^{-126} +6721 q^{-127} +3315 q^{-128} -2072 q^{-129} -4411 q^{-130} -2537 q^{-131} +892 q^{-132} +2713 q^{-133} +1791 q^{-134} -368 q^{-135} -1525 q^{-136} -1078 q^{-137} +46 q^{-138} +817 q^{-139} +657 q^{-140} -31 q^{-141} -410 q^{-142} -300 q^{-143} -18 q^{-144} +184 q^{-145} +170 q^{-146} -5 q^{-147} -101 q^{-148} -61 q^{-149} +12 q^{-150} +39 q^{-151} +19 q^{-152} +5 q^{-153} -23 q^{-154} -20 q^{-155} +17 q^{-156} +10 q^{-157} -6 q^{-158} + q^{-159} -8 q^{-161} +6 q^{-162} +3 q^{-163} -4 q^{-164} + q^{-165} </math>|J6=<math> q^{-18} -2 q^{-19} + q^{-20} +3 q^{-21} -2 q^{-22} -2 q^{-23} -3 q^{-24} +8 q^{-25} -6 q^{-26} +22 q^{-28} -4 q^{-29} -15 q^{-30} -33 q^{-31} +12 q^{-32} -11 q^{-33} +12 q^{-34} +109 q^{-35} +45 q^{-36} -30 q^{-37} -169 q^{-38} -92 q^{-39} -145 q^{-40} -8 q^{-41} +399 q^{-42} +417 q^{-43} +267 q^{-44} -312 q^{-45} -484 q^{-46} -945 q^{-47} -718 q^{-48} +517 q^{-49} +1363 q^{-50} +1806 q^{-51} +759 q^{-52} -232 q^{-53} -2577 q^{-54} -3504 q^{-55} -1710 q^{-56} +1087 q^{-57} +4331 q^{-58} +4838 q^{-59} +4099 q^{-60} -1819 q^{-61} -7223 q^{-62} -8412 q^{-63} -5186 q^{-64} +2619 q^{-65} +9264 q^{-66} +14519 q^{-67} +7614 q^{-68} -4181 q^{-69} -14862 q^{-70} -18731 q^{-71} -10973 q^{-72} +3647 q^{-73} +23531 q^{-74} +25770 q^{-75} +14209 q^{-76} -8018 q^{-77} -28920 q^{-78} -34705 q^{-79} -20922 q^{-80} +15622 q^{-81} +38976 q^{-82} +44006 q^{-83} +20800 q^{-84} -18491 q^{-85} -52186 q^{-86} -58073 q^{-87} -17154 q^{-88} +29079 q^{-89} +66699 q^{-90} +63094 q^{-91} +19104 q^{-92} -45268 q^{-93} -87954 q^{-94} -64499 q^{-95} -8764 q^{-96} +64897 q^{-97} +98738 q^{-98} +72032 q^{-99} -10940 q^{-100} -94527 q^{-101} -106650 q^{-102} -61777 q^{-103} +37275 q^{-104} +113524 q^{-105} +121253 q^{-106} +37707 q^{-107} -77814 q^{-108} -131152 q^{-109} -112182 q^{-110} -3359 q^{-111} +108395 q^{-112} +155711 q^{-113} +84670 q^{-114} -49577 q^{-115} -139215 q^{-116} -150494 q^{-117} -43178 q^{-118} +93488 q^{-119} +176291 q^{-120} +122336 q^{-121} -20779 q^{-122} -138757 q^{-123} -177616 q^{-124} -76882 q^{-125} +76464 q^{-126} +188492 q^{-127} +152178 q^{-128} +6344 q^{-129} -133783 q^{-130} -197392 q^{-131} -107215 q^{-132} +56166 q^{-133} +192865 q^{-134} +177073 q^{-135} +36403 q^{-136} -119619 q^{-137} -207712 q^{-138} -136562 q^{-139} +26139 q^{-140} +181743 q^{-141} +192656 q^{-142} +71194 q^{-143} -88400 q^{-144} -198592 q^{-145} -158247 q^{-146} -14279 q^{-147} +146792 q^{-148} +186918 q^{-149} +101207 q^{-150} -41454 q^{-151} -161908 q^{-152} -158190 q^{-153} -52386 q^{-154} +92208 q^{-155} +152282 q^{-156} +110215 q^{-157} +5020 q^{-158} -104830 q^{-159} -129424 q^{-160} -70153 q^{-161} +37579 q^{-162} +98405 q^{-163} +91783 q^{-164} +31675 q^{-165} -49065 q^{-166} -83258 q^{-167} -61888 q^{-168} +2693 q^{-169} +47459 q^{-170} +57844 q^{-171} +33653 q^{-172} -13203 q^{-173} -40753 q^{-174} -39411 q^{-175} -8703 q^{-176} +15411 q^{-177} +27114 q^{-178} +22137 q^{-179} +838 q^{-180} -14669 q^{-181} -18678 q^{-182} -6914 q^{-183} +2273 q^{-184} +9133 q^{-185} +10343 q^{-186} +2700 q^{-187} -3705 q^{-188} -6736 q^{-189} -2762 q^{-190} -656 q^{-191} +2006 q^{-192} +3625 q^{-193} +1353 q^{-194} -613 q^{-195} -1941 q^{-196} -506 q^{-197} -527 q^{-198} +158 q^{-199} +1014 q^{-200} +376 q^{-201} -74 q^{-202} -504 q^{-203} +89 q^{-204} -169 q^{-205} -79 q^{-206} +248 q^{-207} +64 q^{-208} -20 q^{-209} -140 q^{-210} +100 q^{-211} -35 q^{-212} -41 q^{-213} +57 q^{-214} +2 q^{-215} -4 q^{-216} -42 q^{-217} +39 q^{-218} -2 q^{-219} -16 q^{-220} +14 q^{-221} -3 q^{-222} -8 q^{-224} +6 q^{-225} +3 q^{-226} -4 q^{-227} + q^{-228} </math>|J7=Not Available}}
coloured_jones_4 = <math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} +3 q^{-17} -13 q^{-18} +2 q^{-19} +23 q^{-20} +2 q^{-21} +10 q^{-22} -67 q^{-23} -28 q^{-24} +73 q^{-25} +64 q^{-26} +92 q^{-27} -186 q^{-28} -194 q^{-29} +49 q^{-30} +197 q^{-31} +433 q^{-32} -218 q^{-33} -523 q^{-34} -279 q^{-35} +171 q^{-36} +1072 q^{-37} +138 q^{-38} -726 q^{-39} -962 q^{-40} -378 q^{-41} +1683 q^{-42} +940 q^{-43} -401 q^{-44} -1656 q^{-45} -1497 q^{-46} +1821 q^{-47} +1837 q^{-48} +539 q^{-49} -1946 q^{-50} -2839 q^{-51} +1378 q^{-52} +2444 q^{-53} +1786 q^{-54} -1738 q^{-55} -3999 q^{-56} +578 q^{-57} +2647 q^{-58} +2979 q^{-59} -1198 q^{-60} -4771 q^{-61} -330 q^{-62} +2500 q^{-63} +3893 q^{-64} -478 q^{-65} -5038 q^{-66} -1196 q^{-67} +2008 q^{-68} +4344 q^{-69} +331 q^{-70} -4647 q^{-71} -1809 q^{-72} +1172 q^{-73} +4094 q^{-74} +1037 q^{-75} -3575 q^{-76} -1907 q^{-77} +237 q^{-78} +3138 q^{-79} +1318 q^{-80} -2200 q^{-81} -1430 q^{-82} -368 q^{-83} +1881 q^{-84} +1081 q^{-85} -1070 q^{-86} -731 q^{-87} -479 q^{-88} +878 q^{-89} +616 q^{-90} -441 q^{-91} -230 q^{-92} -312 q^{-93} +333 q^{-94} +255 q^{-95} -175 q^{-96} -30 q^{-97} -135 q^{-98} +110 q^{-99} +80 q^{-100} -66 q^{-101} +9 q^{-102} -42 q^{-103} +29 q^{-104} +20 q^{-105} -19 q^{-106} +4 q^{-107} -8 q^{-108} +6 q^{-109} +3 q^{-110} -4 q^{-111} + q^{-112} </math> |

coloured_jones_5 = <math> q^{-15} -2 q^{-16} + q^{-17} +3 q^{-18} -2 q^{-19} -2 q^{-20} +2 q^{-21} -7 q^{-22} +3 q^{-23} +20 q^{-24} +5 q^{-25} -17 q^{-26} -17 q^{-27} -40 q^{-28} +2 q^{-29} +81 q^{-30} +93 q^{-31} +6 q^{-32} -95 q^{-33} -217 q^{-34} -146 q^{-35} +145 q^{-36} +388 q^{-37} +358 q^{-38} +8 q^{-39} -589 q^{-40} -807 q^{-41} -294 q^{-42} +631 q^{-43} +1298 q^{-44} +1055 q^{-45} -422 q^{-46} -1881 q^{-47} -1953 q^{-48} -368 q^{-49} +2028 q^{-50} +3311 q^{-51} +1689 q^{-52} -1807 q^{-53} -4307 q^{-54} -3616 q^{-55} +510 q^{-56} +5178 q^{-57} +5833 q^{-58} +1377 q^{-59} -4932 q^{-60} -8010 q^{-61} -4336 q^{-62} +3966 q^{-63} +9713 q^{-64} +7475 q^{-65} -1645 q^{-66} -10611 q^{-67} -10992 q^{-68} -1276 q^{-69} +10504 q^{-70} +13934 q^{-71} +5094 q^{-72} -9441 q^{-73} -16569 q^{-74} -8880 q^{-75} +7555 q^{-76} +18254 q^{-77} +12832 q^{-78} -5102 q^{-79} -19456 q^{-80} -16321 q^{-81} +2389 q^{-82} +19912 q^{-83} +19501 q^{-84} +446 q^{-85} -19991 q^{-86} -22235 q^{-87} -3206 q^{-88} +19703 q^{-89} +24507 q^{-90} +5915 q^{-91} -19023 q^{-92} -26444 q^{-93} -8553 q^{-94} +18043 q^{-95} +27810 q^{-96} +11104 q^{-97} -16437 q^{-98} -28639 q^{-99} -13581 q^{-100} +14359 q^{-101} +28564 q^{-102} +15773 q^{-103} -11583 q^{-104} -27561 q^{-105} -17462 q^{-106} +8386 q^{-107} +25406 q^{-108} +18387 q^{-109} -4942 q^{-110} -22316 q^{-111} -18285 q^{-112} +1738 q^{-113} +18385 q^{-114} +17153 q^{-115} +965 q^{-116} -14217 q^{-117} -15075 q^{-118} -2753 q^{-119} +10117 q^{-120} +12370 q^{-121} +3698 q^{-122} -6640 q^{-123} -9456 q^{-124} -3764 q^{-125} +3899 q^{-126} +6721 q^{-127} +3315 q^{-128} -2072 q^{-129} -4411 q^{-130} -2537 q^{-131} +892 q^{-132} +2713 q^{-133} +1791 q^{-134} -368 q^{-135} -1525 q^{-136} -1078 q^{-137} +46 q^{-138} +817 q^{-139} +657 q^{-140} -31 q^{-141} -410 q^{-142} -300 q^{-143} -18 q^{-144} +184 q^{-145} +170 q^{-146} -5 q^{-147} -101 q^{-148} -61 q^{-149} +12 q^{-150} +39 q^{-151} +19 q^{-152} +5 q^{-153} -23 q^{-154} -20 q^{-155} +17 q^{-156} +10 q^{-157} -6 q^{-158} + q^{-159} -8 q^{-161} +6 q^{-162} +3 q^{-163} -4 q^{-164} + q^{-165} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-18} -2 q^{-19} + q^{-20} +3 q^{-21} -2 q^{-22} -2 q^{-23} -3 q^{-24} +8 q^{-25} -6 q^{-26} +22 q^{-28} -4 q^{-29} -15 q^{-30} -33 q^{-31} +12 q^{-32} -11 q^{-33} +12 q^{-34} +109 q^{-35} +45 q^{-36} -30 q^{-37} -169 q^{-38} -92 q^{-39} -145 q^{-40} -8 q^{-41} +399 q^{-42} +417 q^{-43} +267 q^{-44} -312 q^{-45} -484 q^{-46} -945 q^{-47} -718 q^{-48} +517 q^{-49} +1363 q^{-50} +1806 q^{-51} +759 q^{-52} -232 q^{-53} -2577 q^{-54} -3504 q^{-55} -1710 q^{-56} +1087 q^{-57} +4331 q^{-58} +4838 q^{-59} +4099 q^{-60} -1819 q^{-61} -7223 q^{-62} -8412 q^{-63} -5186 q^{-64} +2619 q^{-65} +9264 q^{-66} +14519 q^{-67} +7614 q^{-68} -4181 q^{-69} -14862 q^{-70} -18731 q^{-71} -10973 q^{-72} +3647 q^{-73} +23531 q^{-74} +25770 q^{-75} +14209 q^{-76} -8018 q^{-77} -28920 q^{-78} -34705 q^{-79} -20922 q^{-80} +15622 q^{-81} +38976 q^{-82} +44006 q^{-83} +20800 q^{-84} -18491 q^{-85} -52186 q^{-86} -58073 q^{-87} -17154 q^{-88} +29079 q^{-89} +66699 q^{-90} +63094 q^{-91} +19104 q^{-92} -45268 q^{-93} -87954 q^{-94} -64499 q^{-95} -8764 q^{-96} +64897 q^{-97} +98738 q^{-98} +72032 q^{-99} -10940 q^{-100} -94527 q^{-101} -106650 q^{-102} -61777 q^{-103} +37275 q^{-104} +113524 q^{-105} +121253 q^{-106} +37707 q^{-107} -77814 q^{-108} -131152 q^{-109} -112182 q^{-110} -3359 q^{-111} +108395 q^{-112} +155711 q^{-113} +84670 q^{-114} -49577 q^{-115} -139215 q^{-116} -150494 q^{-117} -43178 q^{-118} +93488 q^{-119} +176291 q^{-120} +122336 q^{-121} -20779 q^{-122} -138757 q^{-123} -177616 q^{-124} -76882 q^{-125} +76464 q^{-126} +188492 q^{-127} +152178 q^{-128} +6344 q^{-129} -133783 q^{-130} -197392 q^{-131} -107215 q^{-132} +56166 q^{-133} +192865 q^{-134} +177073 q^{-135} +36403 q^{-136} -119619 q^{-137} -207712 q^{-138} -136562 q^{-139} +26139 q^{-140} +181743 q^{-141} +192656 q^{-142} +71194 q^{-143} -88400 q^{-144} -198592 q^{-145} -158247 q^{-146} -14279 q^{-147} +146792 q^{-148} +186918 q^{-149} +101207 q^{-150} -41454 q^{-151} -161908 q^{-152} -158190 q^{-153} -52386 q^{-154} +92208 q^{-155} +152282 q^{-156} +110215 q^{-157} +5020 q^{-158} -104830 q^{-159} -129424 q^{-160} -70153 q^{-161} +37579 q^{-162} +98405 q^{-163} +91783 q^{-164} +31675 q^{-165} -49065 q^{-166} -83258 q^{-167} -61888 q^{-168} +2693 q^{-169} +47459 q^{-170} +57844 q^{-171} +33653 q^{-172} -13203 q^{-173} -40753 q^{-174} -39411 q^{-175} -8703 q^{-176} +15411 q^{-177} +27114 q^{-178} +22137 q^{-179} +838 q^{-180} -14669 q^{-181} -18678 q^{-182} -6914 q^{-183} +2273 q^{-184} +9133 q^{-185} +10343 q^{-186} +2700 q^{-187} -3705 q^{-188} -6736 q^{-189} -2762 q^{-190} -656 q^{-191} +2006 q^{-192} +3625 q^{-193} +1353 q^{-194} -613 q^{-195} -1941 q^{-196} -506 q^{-197} -527 q^{-198} +158 q^{-199} +1014 q^{-200} +376 q^{-201} -74 q^{-202} -504 q^{-203} +89 q^{-204} -169 q^{-205} -79 q^{-206} +248 q^{-207} +64 q^{-208} -20 q^{-209} -140 q^{-210} +100 q^{-211} -35 q^{-212} -41 q^{-213} +57 q^{-214} +2 q^{-215} -4 q^{-216} -42 q^{-217} +39 q^{-218} -2 q^{-219} -16 q^{-220} +14 q^{-221} -3 q^{-222} -8 q^{-224} +6 q^{-225} +3 q^{-226} -4 q^{-227} + q^{-228} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 66]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 66]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17],
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19],
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19],
X[19, 12, 20, 13], X[13, 8, 14, 9], X[9, 2, 10, 3]]</nowiki></pre></td></tr>
X[19, 12, 20, 13], X[13, 8, 14, 9], X[9, 2, 10, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 66]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 66]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6,
7, -8, 6]</nowiki></pre></td></tr>
7, -8, 6]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 66]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 16, 2, 18, 8, 6, 20, 12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 66]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 66]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 16, 2, 18, 8, 6, 20, 12]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 66]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 66]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 66]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_66_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 66]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 66]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 9 16 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 66]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 66]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_66_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 66]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 66]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 9 16 2 3
-19 + -- - -- + -- + 16 t - 9 t + 3 t
-19 + -- - -- + -- + 16 t - 9 t + 3 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 66]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 7 z + 9 z + 3 z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 66]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 66], Knot[11, Alternating, 245]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 7 z + 9 z + 3 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 66]], KnotSignature[Knot[10, 66]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{75, -6}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 66]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 4 7 10 12 13 11 8 6 2 -3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 66], Knot[11, Alternating, 245]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 66]], KnotSignature[Knot[10, 66]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{75, -6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 66]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 4 7 10 12 13 11 8 6 2 -3
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
12 11 10 9 8 7 6 5 4
12 11 10 9 8 7 6 5 4
q q q q q q q q q</nowiki></pre></td></tr>
q q q q q q q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 66]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 66]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -40 2 -34 2 3 2 2 3 2 3 -12
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 66]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 66]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -40 2 -34 2 3 2 2 3 2 3 -12
q - --- + q - --- - --- + --- - --- + --- + --- + --- - q +
q - --- + q - --- - --- + --- - --- + --- + --- + --- - q +
36 32 26 24 22 20 18 14
36 32 26 24 22 20 18 14
Line 147: Line 180:
-10
-10
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 66]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 6 2 8 2 10 2 12 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 66]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 12 6 2 8 2 10 2 12 2
2 a + 2 a - 4 a + a + 5 a z + 9 a z - 8 a z + a z +
2 a + 2 a - 4 a + a + 5 a z + 9 a z - 8 a z + a z +
6 4 8 4 10 4 6 6 8 6
6 4 8 4 10 4 6 6 8 6
4 a z + 8 a z - 3 a z + a z + 2 a z</nowiki></pre></td></tr>
4 a z + 8 a z - 3 a z + a z + 2 a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 66]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 7 9 11 6 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 66]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 12 7 9 11 6 2
-2 a + 2 a + 4 a + a + a z - 5 a z - 6 a z + 5 a z -
-2 a + 2 a + 4 a + a + a z - 5 a z - 6 a z + 5 a z -
Line 176: Line 217:
10 8 12 8 9 9 11 9
10 8 12 8 9 9 11 9
7 a z + 4 a z + a z + a z</nowiki></pre></td></tr>
7 a z + 4 a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -17}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 66]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 3 1 4 3 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -17}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 66]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 3 1 4 3 6
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
27 10 25 9 23 9 23 8 21 8 21 7
27 10 25 9 23 9 23 8 21 8 21 7
Line 195: Line 244:
------ + ------ + ------ + ----- + ----
------ + ------ + ------ + ----- + ----
13 3 11 3 11 2 9 2 7
13 3 11 3 11 2 9 2 7
q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 66], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 4 3 10 24 10 36 62 15 77 104
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 66], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -36 4 3 10 24 10 36 62 15 77 104
q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- +
q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- +
35 34 33 32 31 30 29 28 27 26
35 34 33 32 31 30 29 28 27 26
Line 211: Line 264:
--- - --- + --- - --- - --- + -- + q - -- + q
--- - --- + --- - --- - --- + -- + q - -- + q
14 13 12 11 10 9 7
14 13 12 11 10 9 7
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 16:59, 1 September 2005

10 65.gif

10_65

10 67.gif

10_67

10 66.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 66's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 66 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X9,2,10,3
Gauss code -1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6
Dowker-Thistlethwaite code 4 10 14 16 2 18 8 6 20 12
Conway Notation [31,21,21]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

10 66 ML.gif 10 66 AP.gif
[{13, 3}, {2, 11}, {9, 12}, {11, 13}, {10, 4}, {3, 5}, {4, 6}, {5, 9}, {6, 1}, {7, 10}, {8, 2}, {12, 7}, {1, 8}]

[edit Notes on presentations of 10 66]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-17][5]
Hyperbolic Volume 13.0293
A-Polynomial See Data:10 66/A-polynomial

[edit Notes for 10 66's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 10 66's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 75, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a245,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (7, -17)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 66. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-5          11
-7         21-1
-9        4  4
-11       42  -2
-13      74   3
-15     64    -2
-17    67     -1
-19   46      2
-21  36       -3
-23 14        3
-25 3         -3
-271          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials