K11a245

From Knot Atlas
Jump to navigationJump to search

K11a244.gif

K11a244

K11a246.gif

K11a246

K11a245.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a245 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X20,6,21,5 X22,8,1,7 X16,10,17,9 X18,12,19,11 X2,14,3,13 X12,16,13,15 X10,18,11,17 X8,20,9,19 X6,22,7,21
Gauss code 1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -8, 7, -2, 8, -5, 9, -6, 10, -3, 11, -4
Dowker-Thistlethwaite code 4 14 20 22 16 18 2 12 10 8 6
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a245 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11a245's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 3 t^3-9 t^2+16 t-19+16 t^{-1} -9 t^{-2} +3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 3 z^6+9 z^4+7 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 75, 6 }
Jones polynomial [math]\displaystyle{ -q^{14}+3 q^{13}-6 q^{12}+9 q^{11}-11 q^{10}+12 q^9-12 q^8+9 q^7-6 q^6+4 q^5-q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +z^6 a^{-8} +z^6 a^{-10} +5 z^4 a^{-6} +2 z^4 a^{-8} +3 z^4 a^{-10} -z^4 a^{-12} +8 z^2 a^{-6} -2 z^2 a^{-8} +3 z^2 a^{-10} -2 z^2 a^{-12} +4 a^{-6} -4 a^{-8} +2 a^{-10} - a^{-12} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-9} +4 z^9 a^{-11} +3 z^9 a^{-13} +z^8 a^{-8} -3 z^8 a^{-10} +z^8 a^{-12} +5 z^8 a^{-14} +z^7 a^{-7} -z^7 a^{-9} -13 z^7 a^{-11} -6 z^7 a^{-13} +5 z^7 a^{-15} +z^6 a^{-6} +11 z^6 a^{-10} -4 z^6 a^{-12} -13 z^6 a^{-14} +3 z^6 a^{-16} -2 z^5 a^{-7} +3 z^5 a^{-9} +25 z^5 a^{-11} +7 z^5 a^{-13} -12 z^5 a^{-15} +z^5 a^{-17} -5 z^4 a^{-6} -7 z^4 a^{-8} -15 z^4 a^{-10} +7 z^4 a^{-12} +14 z^4 a^{-14} -6 z^4 a^{-16} -2 z^3 a^{-7} -10 z^3 a^{-9} -20 z^3 a^{-11} -2 z^3 a^{-13} +8 z^3 a^{-15} -2 z^3 a^{-17} +8 z^2 a^{-6} +9 z^2 a^{-8} +6 z^2 a^{-10} -z^2 a^{-12} -5 z^2 a^{-14} +z^2 a^{-16} +4 z a^{-7} +6 z a^{-9} +5 z a^{-11} +z a^{-13} -2 z a^{-15} -4 a^{-6} -4 a^{-8} -2 a^{-10} - a^{-12} }[/math]
The A2 invariant Data:K11a245/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a245/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_66,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (7, 19)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 152 }[/math] [math]\displaystyle{ 392 }[/math] [math]\displaystyle{ \frac{3026}{3} }[/math] [math]\displaystyle{ \frac{358}{3} }[/math] [math]\displaystyle{ 4256 }[/math] [math]\displaystyle{ \frac{22544}{3} }[/math] [math]\displaystyle{ \frac{3488}{3} }[/math] [math]\displaystyle{ 856 }[/math] [math]\displaystyle{ \frac{10976}{3} }[/math] [math]\displaystyle{ 11552 }[/math] [math]\displaystyle{ \frac{84728}{3} }[/math] [math]\displaystyle{ \frac{10024}{3} }[/math] [math]\displaystyle{ \frac{1734217}{30} }[/math] [math]\displaystyle{ \frac{34486}{15} }[/math] [math]\displaystyle{ \frac{876794}{45} }[/math] [math]\displaystyle{ \frac{11927}{18} }[/math] [math]\displaystyle{ \frac{69577}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11a245. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          2 2
25         41 -3
23        52  3
21       64   -2
19      65    1
17     66     0
15    36      -3
13   36       3
11  13        -2
9  3         3
711          0
51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a244.gif

K11a244

K11a246.gif

K11a246