K11a244

From Knot Atlas
Jump to navigationJump to search

K11a243.gif

K11a243

K11a245.gif

K11a245

K11a244.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a244 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X18,6,19,5 X22,8,1,7 X16,10,17,9 X20,12,21,11 X2,14,3,13 X8,16,9,15 X12,18,13,17 X6,20,7,19 X10,22,11,21
Gauss code 1, -7, 2, -1, 3, -10, 4, -8, 5, -11, 6, -9, 7, -2, 8, -5, 9, -3, 10, -6, 11, -4
Dowker-Thistlethwaite code 4 14 18 22 16 20 2 8 12 6 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a244 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11a244's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 5 t^3-17 t^2+32 t-39+32 t^{-1} -17 t^{-2} +5 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 5 z^6+13 z^4+9 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 147, 6 }
Jones polynomial [math]\displaystyle{ -q^{14}+4 q^{13}-10 q^{12}+16 q^{11}-21 q^{10}+24 q^9-24 q^8+20 q^7-14 q^6+9 q^5-3 q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +3 z^6 a^{-8} +z^6 a^{-10} +3 z^4 a^{-6} +11 z^4 a^{-8} -z^4 a^{-12} +3 z^2 a^{-6} +12 z^2 a^{-8} -5 z^2 a^{-10} -z^2 a^{-12} + a^{-6} +3 a^{-8} -3 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-10} +2 z^{10} a^{-12} +5 z^9 a^{-9} +12 z^9 a^{-11} +7 z^9 a^{-13} +6 z^8 a^{-8} +12 z^8 a^{-10} +17 z^8 a^{-12} +11 z^8 a^{-14} +3 z^7 a^{-7} -z^7 a^{-9} -10 z^7 a^{-11} +3 z^7 a^{-13} +9 z^7 a^{-15} +z^6 a^{-6} -14 z^6 a^{-8} -31 z^6 a^{-10} -36 z^6 a^{-12} -16 z^6 a^{-14} +4 z^6 a^{-16} -6 z^5 a^{-7} -17 z^5 a^{-9} -20 z^5 a^{-11} -24 z^5 a^{-13} -14 z^5 a^{-15} +z^5 a^{-17} -3 z^4 a^{-6} +15 z^4 a^{-8} +22 z^4 a^{-10} +17 z^4 a^{-12} +9 z^4 a^{-14} -4 z^4 a^{-16} +3 z^3 a^{-7} +19 z^3 a^{-9} +25 z^3 a^{-11} +20 z^3 a^{-13} +10 z^3 a^{-15} -z^3 a^{-17} +3 z^2 a^{-6} -11 z^2 a^{-8} -10 z^2 a^{-10} -3 z^2 a^{-14} +z^2 a^{-16} -6 z a^{-9} -7 z a^{-11} -5 z a^{-13} -4 z a^{-15} - a^{-6} +3 a^{-8} +3 a^{-10} }[/math]
The A2 invariant Data:K11a244/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a244/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (9, 26)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 208 }[/math] [math]\displaystyle{ 648 }[/math] [math]\displaystyle{ 1546 }[/math] [math]\displaystyle{ 214 }[/math] [math]\displaystyle{ 7488 }[/math] [math]\displaystyle{ \frac{38464}{3} }[/math] [math]\displaystyle{ \frac{6592}{3} }[/math] [math]\displaystyle{ 1520 }[/math] [math]\displaystyle{ 7776 }[/math] [math]\displaystyle{ 21632 }[/math] [math]\displaystyle{ 55656 }[/math] [math]\displaystyle{ 7704 }[/math] [math]\displaystyle{ \frac{1090333}{10} }[/math] [math]\displaystyle{ \frac{73282}{15} }[/math] [math]\displaystyle{ \frac{578746}{15} }[/math] [math]\displaystyle{ \frac{4483}{6} }[/math] [math]\displaystyle{ \frac{47933}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11a244. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          3 3
25         71 -6
23        93  6
21       127   -5
19      129    3
17     1212     0
15    812      -4
13   612       6
11  38        -5
9  6         6
713          -2
51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a243.gif

K11a243

K11a245.gif

K11a245