10 71: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
m (Reverted edit of 59.61.233.11, changed back to last version by ScottTestRobot) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 71 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-6,9,-3,4,-5,3,-7,8,-9,6,-8,7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=71|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-6,9,-3,4,-5,3,-7,8,-9,6,-8,7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 26: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[K11n156]], [[K11n179]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = [[10_104]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n156]], [[K11n179]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_104]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 73: | Line 41: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-17 q^{11}+q^{10}+37 q^9-47 q^8-12 q^7+89 q^6-77 q^5-42 q^4+140 q^3-87 q^2-73 q+161-73 q^{-1} -87 q^{-2} +140 q^{-3} -42 q^{-4} -77 q^{-5} +89 q^{-6} -12 q^{-7} -47 q^{-8} +37 q^{-9} + q^{-10} -17 q^{-11} +9 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+14 q^{25}+2 q^{24}-29 q^{23}-8 q^{22}+57 q^{21}+24 q^{20}-98 q^{19}-62 q^{18}+153 q^{17}+126 q^{16}-209 q^{15}-220 q^{14}+249 q^{13}+352 q^{12}-282 q^{11}-485 q^{10}+271 q^9+633 q^8-245 q^7-754 q^6+186 q^5+859 q^4-124 q^3-914 q^2+41 q+941+33 q^{-1} -914 q^{-2} -116 q^{-3} +859 q^{-4} +178 q^{-5} -753 q^{-6} -238 q^{-7} +631 q^{-8} +264 q^{-9} -482 q^{-10} -275 q^{-11} +349 q^{-12} +243 q^{-13} -218 q^{-14} -203 q^{-15} +124 q^{-16} +149 q^{-17} -62 q^{-18} -96 q^{-19} +25 q^{-20} +56 q^{-21} -8 q^{-22} -29 q^{-23} +2 q^{-24} +14 q^{-25} -2 q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-17 q^{11}+q^{10}+37 q^9-47 q^8-12 q^7+89 q^6-77 q^5-42 q^4+140 q^3-87 q^2-73 q+161-73 q^{-1} -87 q^{-2} +140 q^{-3} -42 q^{-4} -77 q^{-5} +89 q^{-6} -12 q^{-7} -47 q^{-8} +37 q^{-9} + q^{-10} -17 q^{-11} +9 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+14 q^{25}+2 q^{24}-29 q^{23}-8 q^{22}+57 q^{21}+24 q^{20}-98 q^{19}-62 q^{18}+153 q^{17}+126 q^{16}-209 q^{15}-220 q^{14}+249 q^{13}+352 q^{12}-282 q^{11}-485 q^{10}+271 q^9+633 q^8-245 q^7-754 q^6+186 q^5+859 q^4-124 q^3-914 q^2+41 q+941+33 q^{-1} -914 q^{-2} -116 q^{-3} +859 q^{-4} +178 q^{-5} -753 q^{-6} -238 q^{-7} +631 q^{-8} +264 q^{-9} -482 q^{-10} -275 q^{-11} +349 q^{-12} +243 q^{-13} -218 q^{-14} -203 q^{-15} +124 q^{-16} +149 q^{-17} -62 q^{-18} -96 q^{-19} +25 q^{-20} +56 q^{-21} -8 q^{-22} -29 q^{-23} +2 q^{-24} +14 q^{-25} -2 q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-17 q^{44}+6 q^{43}+25 q^{42}-13 q^{41}+9 q^{40}-73 q^{39}+19 q^{38}+113 q^{37}-3 q^{36}+q^{35}-273 q^{34}-17 q^{33}+345 q^{32}+179 q^{31}+72 q^{30}-771 q^{29}-345 q^{28}+642 q^{27}+746 q^{26}+557 q^{25}-1487 q^{24}-1253 q^{23}+596 q^{22}+1622 q^{21}+1799 q^{20}-1966 q^{19}-2647 q^{18}-179 q^{17}+2332 q^{16}+3644 q^{15}-1775 q^{14}-3978 q^{13}-1578 q^{12}+2453 q^{11}+5481 q^{10}-968 q^9-4751 q^8-3066 q^7+1993 q^6+6730 q^5+77 q^4-4819 q^3-4190 q^2+1181 q+7163+1074 q^{-1} -4252 q^{-2} -4763 q^{-3} +180 q^{-4} +6734 q^{-5} +1896 q^{-6} -3115 q^{-7} -4696 q^{-8} -885 q^{-9} +5468 q^{-10} +2357 q^{-11} -1602 q^{-12} -3902 q^{-13} -1700 q^{-14} +3609 q^{-15} +2218 q^{-16} -201 q^{-17} -2556 q^{-18} -1876 q^{-19} +1777 q^{-20} +1507 q^{-21} +549 q^{-22} -1192 q^{-23} -1399 q^{-24} +572 q^{-25} +676 q^{-26} +590 q^{-27} -335 q^{-28} -724 q^{-29} +99 q^{-30} +162 q^{-31} +321 q^{-32} -26 q^{-33} -264 q^{-34} +12 q^{-35} -2 q^{-36} +110 q^{-37} +16 q^{-38} -73 q^{-39} +10 q^{-40} -13 q^{-41} +25 q^{-42} +6 q^{-43} -17 q^{-44} +5 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+9 q^{68}-2 q^{67}-20 q^{66}+6 q^{65}+17 q^{64}+8 q^{63}+14 q^{62}-28 q^{61}-73 q^{60}-13 q^{59}+93 q^{58}+132 q^{57}+63 q^{56}-141 q^{55}-335 q^{54}-208 q^{53}+232 q^{52}+645 q^{51}+548 q^{50}-218 q^{49}-1123 q^{48}-1225 q^{47}-38 q^{46}+1694 q^{45}+2358 q^{44}+777 q^{43}-2190 q^{42}-3942 q^{41}-2274 q^{40}+2265 q^{39}+5905 q^{38}+4698 q^{37}-1560 q^{36}-7934 q^{35}-8044 q^{34}-262 q^{33}+9528 q^{32}+12145 q^{31}+3466 q^{30}-10364 q^{29}-16592 q^{28}-7789 q^{27}+9884 q^{26}+20804 q^{25}+13253 q^{24}-8189 q^{23}-24433 q^{22}-19005 q^{21}+5203 q^{20}+26921 q^{19}+24892 q^{18}-1369 q^{17}-28387 q^{16}-30073 q^{15}-3009 q^{14}+28652 q^{13}+34543 q^{12}+7409 q^{11}-28050 q^{10}-37881 q^9-11641 q^8+26655 q^7+40331 q^6+15388 q^5-24759 q^4-41656 q^3-18770 q^2+22324 q+42219+21627 q^{-1} -19497 q^{-2} -41716 q^{-3} -24130 q^{-4} +16071 q^{-5} +40416 q^{-6} +26109 q^{-7} -12228 q^{-8} -37918 q^{-9} -27557 q^{-10} +7865 q^{-11} +34465 q^{-12} +28141 q^{-13} -3353 q^{-14} -29823 q^{-15} -27778 q^{-16} -1073 q^{-17} +24478 q^{-18} +26142 q^{-19} +4853 q^{-20} -18487 q^{-21} -23467 q^{-22} -7689 q^{-23} +12749 q^{-24} +19702 q^{-25} +9182 q^{-26} -7435 q^{-27} -15468 q^{-28} -9473 q^{-29} +3344 q^{-30} +11150 q^{-31} +8549 q^{-32} -407 q^{-33} -7295 q^{-34} -6989 q^{-35} -1219 q^{-36} +4247 q^{-37} +5130 q^{-38} +1826 q^{-39} -2093 q^{-40} -3398 q^{-41} -1770 q^{-42} +778 q^{-43} +2044 q^{-44} +1375 q^{-45} -128 q^{-46} -1085 q^{-47} -922 q^{-48} -119 q^{-49} +506 q^{-50} +546 q^{-51} +162 q^{-52} -212 q^{-53} -294 q^{-54} -104 q^{-55} +73 q^{-56} +121 q^{-57} +79 q^{-58} -20 q^{-59} -71 q^{-60} -24 q^{-61} +16 q^{-62} +8 q^{-63} +16 q^{-64} +6 q^{-65} -20 q^{-66} -2 q^{-67} +9 q^{-68} -2 q^{-69} +3 q^{-71} -4 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-13 q^{97}-3 q^{96}+27 q^{95}-16 q^{94}-11 q^{93}-18 q^{92}+44 q^{91}-17 q^{90}-4 q^{89}+93 q^{88}-59 q^{87}-94 q^{86}-120 q^{85}+122 q^{84}+43 q^{83}+129 q^{82}+374 q^{81}-127 q^{80}-445 q^{79}-704 q^{78}-23 q^{77}+163 q^{76}+820 q^{75}+1679 q^{74}+417 q^{73}-1100 q^{72}-2754 q^{71}-1860 q^{70}-890 q^{69}+2140 q^{68}+5766 q^{67}+4320 q^{66}+105 q^{65}-6429 q^{64}-8228 q^{63}-7743 q^{62}+486 q^{61}+12671 q^{60}+16071 q^{59}+10267 q^{58}-6146 q^{57}-18829 q^{56}-26781 q^{55}-14288 q^{54}+14126 q^{53}+34903 q^{52}+37649 q^{51}+11689 q^{50}-22346 q^{49}-56318 q^{48}-52069 q^{47}-6912 q^{46}+46334 q^{45}+79069 q^{44}+58082 q^{43}+1062 q^{42}-78635 q^{41}-107682 q^{40}-61642 q^{39}+28514 q^{38}+113841 q^{37}+125521 q^{36}+61506 q^{35}-70706 q^{34}-157830 q^{33}-139732 q^{32}-27071 q^{31}+118633 q^{30}+188775 q^{29}+145658 q^{28}-25843 q^{27}-179362 q^{26}-214439 q^{25}-105180 q^{24}+88395 q^{23}+225359 q^{22}+226146 q^{21}+40067 q^{20}-168064 q^{19}-264145 q^{18}-179823 q^{17}+38263 q^{16}+231417 q^{15}+283013 q^{14}+103990 q^{13}-136883 q^{12}-285072 q^{11}-234321 q^{10}-12878 q^9+217193 q^8+313167 q^7+153420 q^6-99859 q^5-284929 q^4-267400 q^3-56989 q^2+192187 q+322667+189245 q^{-1} -60743 q^{-2} -269454 q^{-3} -284321 q^{-4} -96924 q^{-5} +156541 q^{-6} +314357 q^{-7} +215957 q^{-8} -15153 q^{-9} -235908 q^{-10} -285368 q^{-11} -135952 q^{-12} +104928 q^{-13} +283046 q^{-14} +230811 q^{-15} +38316 q^{-16} -178507 q^{-17} -262541 q^{-18} -167495 q^{-19} +38345 q^{-20} +222561 q^{-21} +222168 q^{-22} +88504 q^{-23} -100992 q^{-24} -208570 q^{-25} -175561 q^{-26} -27261 q^{-27} +139141 q^{-28} +180916 q^{-29} +114899 q^{-30} -23730 q^{-31} -131093 q^{-32} -149140 q^{-33} -67729 q^{-34} +56486 q^{-35} +115371 q^{-36} +105182 q^{-37} +26906 q^{-38} -55236 q^{-39} -97296 q^{-40} -70861 q^{-41} +1388 q^{-42} +50932 q^{-43} +69344 q^{-44} +40128 q^{-45} -6076 q^{-46} -45190 q^{-47} -48017 q^{-48} -17786 q^{-49} +10095 q^{-50} +31626 q^{-51} +28508 q^{-52} +11165 q^{-53} -12553 q^{-54} -22005 q^{-55} -14284 q^{-56} -4461 q^{-57} +8682 q^{-58} +12688 q^{-59} +9763 q^{-60} -403 q^{-61} -6499 q^{-62} -6038 q^{-63} -4750 q^{-64} +488 q^{-65} +3493 q^{-66} +4503 q^{-67} +1237 q^{-68} -1008 q^{-69} -1368 q^{-70} -2102 q^{-71} -677 q^{-72} +440 q^{-73} +1427 q^{-74} +509 q^{-75} -6 q^{-76} -17 q^{-77} -589 q^{-78} -320 q^{-79} -67 q^{-80} +366 q^{-81} +81 q^{-82} +3 q^{-83} +104 q^{-84} -114 q^{-85} -79 q^{-86} -49 q^{-87} +97 q^{-88} -7 q^{-89} -20 q^{-90} +42 q^{-91} -18 q^{-92} -10 q^{-93} -16 q^{-94} +27 q^{-95} -3 q^{-96} -13 q^{-97} +10 q^{-98} -3 q^{-99} -3 q^{-101} +4 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+18 q^{131}-4 q^{130}-17 q^{129}+10 q^{128}+5 q^{127}+19 q^{126}-22 q^{125}-49 q^{124}+46 q^{123}-q^{122}-25 q^{121}+50 q^{120}+35 q^{119}+95 q^{118}-67 q^{117}-237 q^{116}-40 q^{115}-72 q^{114}+13 q^{113}+305 q^{112}+327 q^{111}+499 q^{110}-6 q^{109}-834 q^{108}-835 q^{107}-981 q^{106}-329 q^{105}+1035 q^{104}+1848 q^{103}+2739 q^{102}+1559 q^{101}-1414 q^{100}-3589 q^{99}-5583 q^{98}-4419 q^{97}+249 q^{96}+5324 q^{95}+10843 q^{94}+10858 q^{93}+3756 q^{92}-6224 q^{91}-18002 q^{90}-22048 q^{89}-13892 q^{88}+2682 q^{87}+25611 q^{86}+39508 q^{85}+33822 q^{84}+10089 q^{83}-29584 q^{82}-61860 q^{81}-66529 q^{80}-38785 q^{79}+22063 q^{78}+84042 q^{77}+112851 q^{76}+90294 q^{75}+7196 q^{74}-96800 q^{73}-168206 q^{72}-167942 q^{71}-69313 q^{70}+85394 q^{69}+221631 q^{68}+270081 q^{67}+172974 q^{66}-34028 q^{65}-256579 q^{64}-386292 q^{63}-319674 q^{62}-71005 q^{61}+252161 q^{60}+498162 q^{59}+502190 q^{58}+237245 q^{57}-189446 q^{56}-583385 q^{55}-703245 q^{54}-460322 q^{53}+56550 q^{52}+617416 q^{51}+897896 q^{50}+726787 q^{49}+149273 q^{48}-583820 q^{47}-1061619 q^{46}-1012012 q^{45}-415748 q^{44}+474654 q^{43}+1169976 q^{42}+1289213 q^{41}+724519 q^{40}-294998 q^{39}-1212370 q^{38}-1533060 q^{37}-1046266 q^{36}+60784 q^{35}+1184229 q^{34}+1724267 q^{33}+1357122 q^{32}+206118 q^{31}-1096577 q^{30}-1854829 q^{29}-1633207 q^{28}-480434 q^{27}+963299 q^{26}+1925041 q^{25}+1862512 q^{24}+741680 q^{23}-804916 q^{22}-1944029 q^{21}-2038995 q^{20}-974677 q^{19}+638143 q^{18}+1924202 q^{17}+2166570 q^{16}+1172133 q^{15}-477017 q^{14}-1878611 q^{13}-2252020 q^{12}-1334234 q^{11}+327516 q^{10}+1818177 q^9+2306060 q^8+1465819 q^7-191775 q^6-1748494 q^5-2335919 q^4-1575157 q^3+63986 q^2+1670691 q+2348802+1669944 q^{-1} +61475 q^{-2} -1580758 q^{-3} -2343857 q^{-4} -1755851 q^{-5} -194546 q^{-6} +1471175 q^{-7} +2319234 q^{-8} +1834551 q^{-9} +339718 q^{-10} -1333529 q^{-11} -2265344 q^{-12} -1901929 q^{-13} -500698 q^{-14} +1159908 q^{-15} +2173423 q^{-16} +1949453 q^{-17} +672252 q^{-18} -947289 q^{-19} -2032365 q^{-20} -1963836 q^{-21} -844916 q^{-22} +698683 q^{-23} +1836854 q^{-24} +1930889 q^{-25} +1001339 q^{-26} -425443 q^{-27} -1586172 q^{-28} -1839147 q^{-29} -1122928 q^{-30} +146973 q^{-31} +1291084 q^{-32} +1682678 q^{-33} +1189349 q^{-34} +113341 q^{-35} -968596 q^{-36} -1466308 q^{-37} -1189743 q^{-38} -329709 q^{-39} +646595 q^{-40} +1203823 q^{-41} +1118353 q^{-42} +482769 q^{-43} -350263 q^{-44} -919307 q^{-45} -986055 q^{-46} -561821 q^{-47} +106912 q^{-48} +640217 q^{-49} +808886 q^{-50} +568347 q^{-51} +70019 q^{-52} -391940 q^{-53} -613950 q^{-54} -516053 q^{-55} -174862 q^{-56} +194438 q^{-57} +425070 q^{-58} +424638 q^{-59} +216201 q^{-60} -55025 q^{-61} -263003 q^{-62} -318303 q^{-63} -209546 q^{-64} -27811 q^{-65} +139438 q^{-66} +216128 q^{-67} +173949 q^{-68} +65113 q^{-69} -56221 q^{-70} -131497 q^{-71} -127792 q^{-72} -71267 q^{-73} +8490 q^{-74} +70271 q^{-75} +83625 q^{-76} +60143 q^{-77} +13260 q^{-78} -31096 q^{-79} -48559 q^{-80} -43446 q^{-81} -18945 q^{-82} +9772 q^{-83} +24774 q^{-84} +27496 q^{-85} +16498 q^{-86} -164 q^{-87} -10549 q^{-88} -15397 q^{-89} -11692 q^{-90} -2922 q^{-91} +3329 q^{-92} +7818 q^{-93} +7170 q^{-94} +2757 q^{-95} -364 q^{-96} -3350 q^{-97} -3768 q^{-98} -2015 q^{-99} -706 q^{-100} +1365 q^{-101} +1990 q^{-102} +1035 q^{-103} +541 q^{-104} -395 q^{-105} -735 q^{-106} -483 q^{-107} -569 q^{-108} +88 q^{-109} +442 q^{-110} +196 q^{-111} +192 q^{-112} -44 q^{-113} -70 q^{-114} - q^{-115} -195 q^{-116} -42 q^{-117} +98 q^{-118} +25 q^{-119} +39 q^{-120} -32 q^{-121} -4 q^{-122} +48 q^{-123} -46 q^{-124} -20 q^{-125} +19 q^{-126} +4 q^{-127} +10 q^{-128} -17 q^{-129} -4 q^{-130} +18 q^{-131} -6 q^{-132} -5 q^{-133} +3 q^{-134} +3 q^{-136} -4 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-17 q^{44}+6 q^{43}+25 q^{42}-13 q^{41}+9 q^{40}-73 q^{39}+19 q^{38}+113 q^{37}-3 q^{36}+q^{35}-273 q^{34}-17 q^{33}+345 q^{32}+179 q^{31}+72 q^{30}-771 q^{29}-345 q^{28}+642 q^{27}+746 q^{26}+557 q^{25}-1487 q^{24}-1253 q^{23}+596 q^{22}+1622 q^{21}+1799 q^{20}-1966 q^{19}-2647 q^{18}-179 q^{17}+2332 q^{16}+3644 q^{15}-1775 q^{14}-3978 q^{13}-1578 q^{12}+2453 q^{11}+5481 q^{10}-968 q^9-4751 q^8-3066 q^7+1993 q^6+6730 q^5+77 q^4-4819 q^3-4190 q^2+1181 q+7163+1074 q^{-1} -4252 q^{-2} -4763 q^{-3} +180 q^{-4} +6734 q^{-5} +1896 q^{-6} -3115 q^{-7} -4696 q^{-8} -885 q^{-9} +5468 q^{-10} +2357 q^{-11} -1602 q^{-12} -3902 q^{-13} -1700 q^{-14} +3609 q^{-15} +2218 q^{-16} -201 q^{-17} -2556 q^{-18} -1876 q^{-19} +1777 q^{-20} +1507 q^{-21} +549 q^{-22} -1192 q^{-23} -1399 q^{-24} +572 q^{-25} +676 q^{-26} +590 q^{-27} -335 q^{-28} -724 q^{-29} +99 q^{-30} +162 q^{-31} +321 q^{-32} -26 q^{-33} -264 q^{-34} +12 q^{-35} -2 q^{-36} +110 q^{-37} +16 q^{-38} -73 q^{-39} +10 q^{-40} -13 q^{-41} +25 q^{-42} +6 q^{-43} -17 q^{-44} +5 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+9 q^{68}-2 q^{67}-20 q^{66}+6 q^{65}+17 q^{64}+8 q^{63}+14 q^{62}-28 q^{61}-73 q^{60}-13 q^{59}+93 q^{58}+132 q^{57}+63 q^{56}-141 q^{55}-335 q^{54}-208 q^{53}+232 q^{52}+645 q^{51}+548 q^{50}-218 q^{49}-1123 q^{48}-1225 q^{47}-38 q^{46}+1694 q^{45}+2358 q^{44}+777 q^{43}-2190 q^{42}-3942 q^{41}-2274 q^{40}+2265 q^{39}+5905 q^{38}+4698 q^{37}-1560 q^{36}-7934 q^{35}-8044 q^{34}-262 q^{33}+9528 q^{32}+12145 q^{31}+3466 q^{30}-10364 q^{29}-16592 q^{28}-7789 q^{27}+9884 q^{26}+20804 q^{25}+13253 q^{24}-8189 q^{23}-24433 q^{22}-19005 q^{21}+5203 q^{20}+26921 q^{19}+24892 q^{18}-1369 q^{17}-28387 q^{16}-30073 q^{15}-3009 q^{14}+28652 q^{13}+34543 q^{12}+7409 q^{11}-28050 q^{10}-37881 q^9-11641 q^8+26655 q^7+40331 q^6+15388 q^5-24759 q^4-41656 q^3-18770 q^2+22324 q+42219+21627 q^{-1} -19497 q^{-2} -41716 q^{-3} -24130 q^{-4} +16071 q^{-5} +40416 q^{-6} +26109 q^{-7} -12228 q^{-8} -37918 q^{-9} -27557 q^{-10} +7865 q^{-11} +34465 q^{-12} +28141 q^{-13} -3353 q^{-14} -29823 q^{-15} -27778 q^{-16} -1073 q^{-17} +24478 q^{-18} +26142 q^{-19} +4853 q^{-20} -18487 q^{-21} -23467 q^{-22} -7689 q^{-23} +12749 q^{-24} +19702 q^{-25} +9182 q^{-26} -7435 q^{-27} -15468 q^{-28} -9473 q^{-29} +3344 q^{-30} +11150 q^{-31} +8549 q^{-32} -407 q^{-33} -7295 q^{-34} -6989 q^{-35} -1219 q^{-36} +4247 q^{-37} +5130 q^{-38} +1826 q^{-39} -2093 q^{-40} -3398 q^{-41} -1770 q^{-42} +778 q^{-43} +2044 q^{-44} +1375 q^{-45} -128 q^{-46} -1085 q^{-47} -922 q^{-48} -119 q^{-49} +506 q^{-50} +546 q^{-51} +162 q^{-52} -212 q^{-53} -294 q^{-54} -104 q^{-55} +73 q^{-56} +121 q^{-57} +79 q^{-58} -20 q^{-59} -71 q^{-60} -24 q^{-61} +16 q^{-62} +8 q^{-63} +16 q^{-64} +6 q^{-65} -20 q^{-66} -2 q^{-67} +9 q^{-68} -2 q^{-69} +3 q^{-71} -4 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-13 q^{97}-3 q^{96}+27 q^{95}-16 q^{94}-11 q^{93}-18 q^{92}+44 q^{91}-17 q^{90}-4 q^{89}+93 q^{88}-59 q^{87}-94 q^{86}-120 q^{85}+122 q^{84}+43 q^{83}+129 q^{82}+374 q^{81}-127 q^{80}-445 q^{79}-704 q^{78}-23 q^{77}+163 q^{76}+820 q^{75}+1679 q^{74}+417 q^{73}-1100 q^{72}-2754 q^{71}-1860 q^{70}-890 q^{69}+2140 q^{68}+5766 q^{67}+4320 q^{66}+105 q^{65}-6429 q^{64}-8228 q^{63}-7743 q^{62}+486 q^{61}+12671 q^{60}+16071 q^{59}+10267 q^{58}-6146 q^{57}-18829 q^{56}-26781 q^{55}-14288 q^{54}+14126 q^{53}+34903 q^{52}+37649 q^{51}+11689 q^{50}-22346 q^{49}-56318 q^{48}-52069 q^{47}-6912 q^{46}+46334 q^{45}+79069 q^{44}+58082 q^{43}+1062 q^{42}-78635 q^{41}-107682 q^{40}-61642 q^{39}+28514 q^{38}+113841 q^{37}+125521 q^{36}+61506 q^{35}-70706 q^{34}-157830 q^{33}-139732 q^{32}-27071 q^{31}+118633 q^{30}+188775 q^{29}+145658 q^{28}-25843 q^{27}-179362 q^{26}-214439 q^{25}-105180 q^{24}+88395 q^{23}+225359 q^{22}+226146 q^{21}+40067 q^{20}-168064 q^{19}-264145 q^{18}-179823 q^{17}+38263 q^{16}+231417 q^{15}+283013 q^{14}+103990 q^{13}-136883 q^{12}-285072 q^{11}-234321 q^{10}-12878 q^9+217193 q^8+313167 q^7+153420 q^6-99859 q^5-284929 q^4-267400 q^3-56989 q^2+192187 q+322667+189245 q^{-1} -60743 q^{-2} -269454 q^{-3} -284321 q^{-4} -96924 q^{-5} +156541 q^{-6} +314357 q^{-7} +215957 q^{-8} -15153 q^{-9} -235908 q^{-10} -285368 q^{-11} -135952 q^{-12} +104928 q^{-13} +283046 q^{-14} +230811 q^{-15} +38316 q^{-16} -178507 q^{-17} -262541 q^{-18} -167495 q^{-19} +38345 q^{-20} +222561 q^{-21} +222168 q^{-22} +88504 q^{-23} -100992 q^{-24} -208570 q^{-25} -175561 q^{-26} -27261 q^{-27} +139141 q^{-28} +180916 q^{-29} +114899 q^{-30} -23730 q^{-31} -131093 q^{-32} -149140 q^{-33} -67729 q^{-34} +56486 q^{-35} +115371 q^{-36} +105182 q^{-37} +26906 q^{-38} -55236 q^{-39} -97296 q^{-40} -70861 q^{-41} +1388 q^{-42} +50932 q^{-43} +69344 q^{-44} +40128 q^{-45} -6076 q^{-46} -45190 q^{-47} -48017 q^{-48} -17786 q^{-49} +10095 q^{-50} +31626 q^{-51} +28508 q^{-52} +11165 q^{-53} -12553 q^{-54} -22005 q^{-55} -14284 q^{-56} -4461 q^{-57} +8682 q^{-58} +12688 q^{-59} +9763 q^{-60} -403 q^{-61} -6499 q^{-62} -6038 q^{-63} -4750 q^{-64} +488 q^{-65} +3493 q^{-66} +4503 q^{-67} +1237 q^{-68} -1008 q^{-69} -1368 q^{-70} -2102 q^{-71} -677 q^{-72} +440 q^{-73} +1427 q^{-74} +509 q^{-75} -6 q^{-76} -17 q^{-77} -589 q^{-78} -320 q^{-79} -67 q^{-80} +366 q^{-81} +81 q^{-82} +3 q^{-83} +104 q^{-84} -114 q^{-85} -79 q^{-86} -49 q^{-87} +97 q^{-88} -7 q^{-89} -20 q^{-90} +42 q^{-91} -18 q^{-92} -10 q^{-93} -16 q^{-94} +27 q^{-95} -3 q^{-96} -13 q^{-97} +10 q^{-98} -3 q^{-99} -3 q^{-101} +4 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+18 q^{131}-4 q^{130}-17 q^{129}+10 q^{128}+5 q^{127}+19 q^{126}-22 q^{125}-49 q^{124}+46 q^{123}-q^{122}-25 q^{121}+50 q^{120}+35 q^{119}+95 q^{118}-67 q^{117}-237 q^{116}-40 q^{115}-72 q^{114}+13 q^{113}+305 q^{112}+327 q^{111}+499 q^{110}-6 q^{109}-834 q^{108}-835 q^{107}-981 q^{106}-329 q^{105}+1035 q^{104}+1848 q^{103}+2739 q^{102}+1559 q^{101}-1414 q^{100}-3589 q^{99}-5583 q^{98}-4419 q^{97}+249 q^{96}+5324 q^{95}+10843 q^{94}+10858 q^{93}+3756 q^{92}-6224 q^{91}-18002 q^{90}-22048 q^{89}-13892 q^{88}+2682 q^{87}+25611 q^{86}+39508 q^{85}+33822 q^{84}+10089 q^{83}-29584 q^{82}-61860 q^{81}-66529 q^{80}-38785 q^{79}+22063 q^{78}+84042 q^{77}+112851 q^{76}+90294 q^{75}+7196 q^{74}-96800 q^{73}-168206 q^{72}-167942 q^{71}-69313 q^{70}+85394 q^{69}+221631 q^{68}+270081 q^{67}+172974 q^{66}-34028 q^{65}-256579 q^{64}-386292 q^{63}-319674 q^{62}-71005 q^{61}+252161 q^{60}+498162 q^{59}+502190 q^{58}+237245 q^{57}-189446 q^{56}-583385 q^{55}-703245 q^{54}-460322 q^{53}+56550 q^{52}+617416 q^{51}+897896 q^{50}+726787 q^{49}+149273 q^{48}-583820 q^{47}-1061619 q^{46}-1012012 q^{45}-415748 q^{44}+474654 q^{43}+1169976 q^{42}+1289213 q^{41}+724519 q^{40}-294998 q^{39}-1212370 q^{38}-1533060 q^{37}-1046266 q^{36}+60784 q^{35}+1184229 q^{34}+1724267 q^{33}+1357122 q^{32}+206118 q^{31}-1096577 q^{30}-1854829 q^{29}-1633207 q^{28}-480434 q^{27}+963299 q^{26}+1925041 q^{25}+1862512 q^{24}+741680 q^{23}-804916 q^{22}-1944029 q^{21}-2038995 q^{20}-974677 q^{19}+638143 q^{18}+1924202 q^{17}+2166570 q^{16}+1172133 q^{15}-477017 q^{14}-1878611 q^{13}-2252020 q^{12}-1334234 q^{11}+327516 q^{10}+1818177 q^9+2306060 q^8+1465819 q^7-191775 q^6-1748494 q^5-2335919 q^4-1575157 q^3+63986 q^2+1670691 q+2348802+1669944 q^{-1} +61475 q^{-2} -1580758 q^{-3} -2343857 q^{-4} -1755851 q^{-5} -194546 q^{-6} +1471175 q^{-7} +2319234 q^{-8} +1834551 q^{-9} +339718 q^{-10} -1333529 q^{-11} -2265344 q^{-12} -1901929 q^{-13} -500698 q^{-14} +1159908 q^{-15} +2173423 q^{-16} +1949453 q^{-17} +672252 q^{-18} -947289 q^{-19} -2032365 q^{-20} -1963836 q^{-21} -844916 q^{-22} +698683 q^{-23} +1836854 q^{-24} +1930889 q^{-25} +1001339 q^{-26} -425443 q^{-27} -1586172 q^{-28} -1839147 q^{-29} -1122928 q^{-30} +146973 q^{-31} +1291084 q^{-32} +1682678 q^{-33} +1189349 q^{-34} +113341 q^{-35} -968596 q^{-36} -1466308 q^{-37} -1189743 q^{-38} -329709 q^{-39} +646595 q^{-40} +1203823 q^{-41} +1118353 q^{-42} +482769 q^{-43} -350263 q^{-44} -919307 q^{-45} -986055 q^{-46} -561821 q^{-47} +106912 q^{-48} +640217 q^{-49} +808886 q^{-50} +568347 q^{-51} +70019 q^{-52} -391940 q^{-53} -613950 q^{-54} -516053 q^{-55} -174862 q^{-56} +194438 q^{-57} +425070 q^{-58} +424638 q^{-59} +216201 q^{-60} -55025 q^{-61} -263003 q^{-62} -318303 q^{-63} -209546 q^{-64} -27811 q^{-65} +139438 q^{-66} +216128 q^{-67} +173949 q^{-68} +65113 q^{-69} -56221 q^{-70} -131497 q^{-71} -127792 q^{-72} -71267 q^{-73} +8490 q^{-74} +70271 q^{-75} +83625 q^{-76} +60143 q^{-77} +13260 q^{-78} -31096 q^{-79} -48559 q^{-80} -43446 q^{-81} -18945 q^{-82} +9772 q^{-83} +24774 q^{-84} +27496 q^{-85} +16498 q^{-86} -164 q^{-87} -10549 q^{-88} -15397 q^{-89} -11692 q^{-90} -2922 q^{-91} +3329 q^{-92} +7818 q^{-93} +7170 q^{-94} +2757 q^{-95} -364 q^{-96} -3350 q^{-97} -3768 q^{-98} -2015 q^{-99} -706 q^{-100} +1365 q^{-101} +1990 q^{-102} +1035 q^{-103} +541 q^{-104} -395 q^{-105} -735 q^{-106} -483 q^{-107} -569 q^{-108} +88 q^{-109} +442 q^{-110} +196 q^{-111} +192 q^{-112} -44 q^{-113} -70 q^{-114} - q^{-115} -195 q^{-116} -42 q^{-117} +98 q^{-118} +25 q^{-119} +39 q^{-120} -32 q^{-121} -4 q^{-122} +48 q^{-123} -46 q^{-124} -20 q^{-125} +19 q^{-126} +4 q^{-127} +10 q^{-128} -17 q^{-129} -4 q^{-130} +18 q^{-131} -6 q^{-132} -5 q^{-133} +3 q^{-134} +3 q^{-136} -4 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 71]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], |
|||
X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1], |
X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1], |
||
X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></ |
X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 71]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, |
|||
6, -8, 7]</nowiki></ |
6, -8, 7]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 71]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, 18, 14, 6, 20, 10, 16]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 71]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 71]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_71_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 71]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 71]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 71]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 71]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_71_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 71]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 71]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 18 2 3 |
|||
25 - t + -- - -- - 18 t + 7 t - t |
25 - t + -- - -- - 18 t + 7 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 71]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 71]][z]</nowiki></code></td></tr> |
|||
1 + z + z - z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z + z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 71], Knot[11, NonAlternating, 156], |
|||
Knot[11, NonAlternating, 179]}</nowiki></ |
Knot[11, NonAlternating, 179]}</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 71]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{77, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 71]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 6 10 12 2 3 4 5 |
|||
13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q |
13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 71]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 71], Knot[10, 104]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 71]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -12 2 3 -6 -4 2 2 4 6 8 |
|||
-3 - q + q - --- + -- + q - q + -- + 2 q - q + q + 3 q - |
-3 - q + q - --- + -- + q - q + -- + 2 q - q + q + 3 q - |
||
10 8 2 |
10 8 2 |
||
Line 149: | Line 183: | ||
10 12 16 |
10 12 16 |
||
2 q + q - q</nowiki></ |
2 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 71]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 71]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 3 2 4 2 z 4 z 2 2 4 2 4 |
-4 3 2 4 2 z 4 z 2 2 4 2 4 |
||
-3 - a + -- + 3 a - a - 5 z - -- + ---- + 4 a z - a z - 3 z + |
-3 - a + -- + 3 a - a - 5 z - -- + ---- + 4 a z - a z - 3 z + |
||
Line 162: | Line 200: | ||
---- + 2 a z - z |
---- + 2 a z - z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 71]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 71]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 2 4 z z z 3 5 2 |
|||
-3 - a - -- - 3 a - a + -- + -- - - - a z + a z + a z + 12 z + |
-3 - a - -- - 3 a - a + -- + -- - - - a z + a z + a z + 12 z + |
||
2 5 3 a |
2 5 3 a |
||
Line 192: | Line 234: | ||
---- + ---- + 8 a z + 4 a z + 6 z + ---- + 3 a z + -- + a z |
---- + ---- + 8 a z + 4 a z + 6 z + ---- + 3 a z + -- + a z |
||
3 a 2 a |
3 a 2 a |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 71]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 71]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 1 2 1 4 2 6 4 |
|||
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 209: | Line 259: | ||
7 4 9 4 11 5 |
7 4 9 4 11 5 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 71], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 71], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 -13 9 17 -10 37 47 12 89 77 |
|||
161 + q - --- + q + --- - --- + q + -- - -- - -- + -- - -- - |
161 + q - --- + q + --- - --- + q + -- - -- - -- + -- - -- - |
||
14 12 11 9 8 7 6 5 |
14 12 11 9 8 7 6 5 |
||
Line 223: | Line 277: | ||
7 8 9 10 11 12 13 14 15 |
7 8 9 10 11 12 13 14 15 |
||
12 q - 47 q + 37 q + q - 17 q + 9 q + q - 3 q + q</nowiki></ |
12 q - 47 q + 37 q + q - 17 q + 9 q + q - 3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:38, 7 June 2007
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 71's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,19,10,18 X15,20,16,1 X19,16,20,17 X17,11,18,10 X7283 |
Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7 |
Dowker-Thistlethwaite code | 4 8 12 2 18 14 6 20 10 16 |
Conway Notation | [22,21,2+] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{12, 4}, {3, 10}, {6, 11}, {10, 12}, {5, 7}, {4, 6}, {8, 5}, {7, 2}, {1, 3}, {2, 9}, {11, 8}, {9, 1}] |
[edit Notes on presentations of 10 71]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 71"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,19,10,18 X15,20,16,1 X19,16,20,17 X17,11,18,10 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 18 14 6 20 10 16 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,21,2+] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {6, 11}, {10, 12}, {5, 7}, {4, 6}, {8, 5}, {7, 2}, {1, 3}, {2, 9}, {11, 8}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 71"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 77, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n156, K11n179,}
Same Jones Polynomial (up to mirroring, ): {10_104,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 71"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n156, K11n179,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_104,} |
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 71. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|