10 104: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=10_104}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 10 |
k = 104 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-9,8,-1,4,-6,3,-7,9,-8,5,-4,10,-2,6,-3,7,-5/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 10 |
braid_width = 3 |
braid_index = 3 |
same_alexander = |
same_jones = [[10_71]], |
khovanov_table = <table border=1>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>6</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>4</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>7</td><td bgcolor=yellow>6</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>6</td><td bgcolor=yellow>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>6</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>6</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>4</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math>q^{15}-3 q^{14}+2 q^{13}+7 q^{12}-18 q^{11}+6 q^{10}+33 q^9-49 q^8-5 q^7+84 q^6-78 q^5-36 q^4+134 q^3-86 q^2-68 q+154-70 q^{-1} -84 q^{-2} +133 q^{-3} -37 q^{-4} -76 q^{-5} +83 q^{-6} -7 q^{-7} -46 q^{-8} +33 q^{-9} +3 q^{-10} -16 q^{-11} +8 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math> |
coloured_jones_3 = <math>-q^{30}+3 q^{29}-2 q^{28}-3 q^{27}+2 q^{26}+11 q^{25}-8 q^{24}-25 q^{23}+14 q^{22}+55 q^{21}-15 q^{20}-104 q^{19}-8 q^{18}+173 q^{17}+63 q^{16}-244 q^{15}-156 q^{14}+293 q^{13}+297 q^{12}-328 q^{11}-438 q^{10}+307 q^9+594 q^8-268 q^7-717 q^6+196 q^5+819 q^4-122 q^3-872 q^2+32 q+894+51 q^{-1} -867 q^{-2} -141 q^{-3} +809 q^{-4} +214 q^{-5} -700 q^{-6} -281 q^{-7} +571 q^{-8} +310 q^{-9} -414 q^{-10} -317 q^{-11} +277 q^{-12} +270 q^{-13} -147 q^{-14} -213 q^{-15} +65 q^{-16} +143 q^{-17} -20 q^{-18} -82 q^{-19} +2 q^{-20} +42 q^{-21} + q^{-22} -20 q^{-23} +10 q^{-25} -2 q^{-26} -3 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math> |
coloured_jones_4 = <math>q^{50}-3 q^{49}+2 q^{48}+3 q^{47}-6 q^{46}+5 q^{45}-10 q^{44}+14 q^{43}+15 q^{42}-38 q^{41}+3 q^{40}-28 q^{39}+72 q^{38}+91 q^{37}-117 q^{36}-83 q^{35}-163 q^{34}+197 q^{33}+410 q^{32}-60 q^{31}-261 q^{30}-728 q^{29}+62 q^{28}+989 q^{27}+583 q^{26}-32 q^{25}-1726 q^{24}-920 q^{23}+1167 q^{22}+1785 q^{21}+1288 q^{20}-2382 q^{19}-2656 q^{18}+226 q^{17}+2700 q^{16}+3480 q^{15}-1976 q^{14}-4204 q^{13}-1581 q^{12}+2672 q^{11}+5538 q^{10}-767 q^9-4892 q^8-3339 q^7+1925 q^6+6757 q^5+540 q^4-4776 q^3-4519 q^2+931 q+7099+1639 q^{-1} -4092 q^{-2} -5106 q^{-3} -193 q^{-4} +6625 q^{-5} +2562 q^{-6} -2818 q^{-7} -5061 q^{-8} -1459 q^{-9} +5234 q^{-10} +3109 q^{-11} -1034 q^{-12} -4122 q^{-13} -2457 q^{-14} +3073 q^{-15} +2809 q^{-16} +599 q^{-17} -2391 q^{-18} -2510 q^{-19} +999 q^{-20} +1648 q^{-21} +1223 q^{-22} -712 q^{-23} -1605 q^{-24} -66 q^{-25} +452 q^{-26} +849 q^{-27} +84 q^{-28} -607 q^{-29} -159 q^{-30} -68 q^{-31} +295 q^{-32} +135 q^{-33} -135 q^{-34} -11 q^{-35} -83 q^{-36} +55 q^{-37} +35 q^{-38} -33 q^{-39} +24 q^{-40} -22 q^{-41} +10 q^{-42} +4 q^{-43} -13 q^{-44} +8 q^{-45} -3 q^{-46} +3 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math> |
coloured_jones_5 = <math>-q^{75}+3 q^{74}-2 q^{73}-3 q^{72}+6 q^{71}-q^{70}-6 q^{69}+4 q^{68}-3 q^{67}-5 q^{66}+24 q^{65}+14 q^{64}-33 q^{63}-37 q^{62}-25 q^{61}+22 q^{60}+119 q^{59}+123 q^{58}-47 q^{57}-251 q^{56}-289 q^{55}-67 q^{54}+398 q^{53}+687 q^{52}+397 q^{51}-446 q^{50}-1238 q^{49}-1154 q^{48}+95 q^{47}+1768 q^{46}+2416 q^{45}+1034 q^{44}-1854 q^{43}-4015 q^{42}-3165 q^{41}+855 q^{40}+5369 q^{39}+6313 q^{38}+1767 q^{37}-5691 q^{36}-9957 q^{35}-6179 q^{34}+4158 q^{33}+13104 q^{32}+12099 q^{31}-185 q^{30}-14905 q^{29}-18664 q^{28}-5907 q^{27}+14355 q^{26}+24701 q^{25}+13819 q^{24}-11486 q^{23}-29398 q^{22}-22091 q^{21}+6459 q^{20}+31939 q^{19}+30076 q^{18}-191 q^{17}-32564 q^{16}-36589 q^{15}-6498 q^{14}+31418 q^{13}+41546 q^{12}+12732 q^{11}-29227 q^{10}-44748 q^9-18138 q^8+26441 q^7+46666 q^6+22493 q^5-23499 q^4-47429 q^3-26095 q^2+20413 q+47526+29068 q^{-1} -17132 q^{-2} -46784 q^{-3} -31774 q^{-4} +13266 q^{-5} +45291 q^{-6} +34174 q^{-7} -8711 q^{-8} -42512 q^{-9} -36155 q^{-10} +3267 q^{-11} +38333 q^{-12} +37200 q^{-13} +2706 q^{-14} -32386 q^{-15} -36861 q^{-16} -8697 q^{-17} +25065 q^{-18} +34502 q^{-19} +13766 q^{-20} -16666 q^{-21} -30208 q^{-22} -17145 q^{-23} +8540 q^{-24} +24030 q^{-25} +18129 q^{-26} -1386 q^{-27} -17023 q^{-28} -16860 q^{-29} -3525 q^{-30} +10157 q^{-31} +13631 q^{-32} +6140 q^{-33} -4509 q^{-34} -9614 q^{-35} -6494 q^{-36} +697 q^{-37} +5695 q^{-38} +5374 q^{-39} +1267 q^{-40} -2658 q^{-41} -3652 q^{-42} -1803 q^{-43} +792 q^{-44} +2034 q^{-45} +1495 q^{-46} +102 q^{-47} -890 q^{-48} -945 q^{-49} -349 q^{-50} +271 q^{-51} +476 q^{-52} +281 q^{-53} -21 q^{-54} -164 q^{-55} -163 q^{-56} -61 q^{-57} +55 q^{-58} +70 q^{-59} +23 q^{-60} +10 q^{-61} -10 q^{-62} -32 q^{-63} -5 q^{-64} +11 q^{-65} -6 q^{-66} +6 q^{-67} +9 q^{-68} -5 q^{-69} -3 q^{-70} +3 q^{-71} -3 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math> |
coloured_jones_6 = <math>q^{105}-3 q^{104}+2 q^{103}+3 q^{102}-6 q^{101}+q^{100}+2 q^{99}+12 q^{98}-15 q^{97}-7 q^{96}+18 q^{95}-27 q^{94}+3 q^{93}+25 q^{92}+64 q^{91}-32 q^{90}-76 q^{89}-4 q^{88}-117 q^{87}+6 q^{86}+164 q^{85}+350 q^{84}+75 q^{83}-249 q^{82}-288 q^{81}-702 q^{80}-339 q^{79}+397 q^{78}+1444 q^{77}+1246 q^{76}+287 q^{75}-636 q^{74}-2728 q^{73}-2915 q^{72}-1278 q^{71}+2585 q^{70}+4816 q^{69}+4964 q^{68}+3061 q^{67}-3795 q^{66}-9094 q^{65}-10515 q^{64}-3800 q^{63}+5092 q^{62}+14235 q^{61}+18860 q^{60}+8912 q^{59}-7749 q^{58}-25137 q^{57}-27807 q^{56}-17245 q^{55}+9192 q^{54}+39409 q^{53}+46398 q^{52}+27242 q^{51}-16452 q^{50}-54412 q^{49}-71828 q^{48}-42123 q^{47}+25482 q^{46}+83921 q^{45}+101148 q^{44}+50999 q^{43}-35000 q^{42}-122927 q^{41}-137731 q^{40}-58278 q^{39}+66062 q^{38}+167522 q^{37}+165780 q^{36}+61451 q^{35}-111824 q^{34}-222060 q^{33}-189632 q^{32}-30849 q^{31}+168175 q^{30}+265940 q^{29}+202106 q^{28}-23862 q^{27}-240500 q^{26}-303184 q^{25}-165941 q^{24}+97371 q^{23}+302526 q^{22}+321579 q^{21}+95656 q^{20}-194325 q^{19}-356551 q^{18}-278055 q^{17}+743 q^{16}+281535 q^{15}+384935 q^{14}+193064 q^{13}-125667 q^{12}-358439 q^{11}-340910 q^{10}-77759 q^9+239507 q^8+402942 q^7+251066 q^6-67949 q^5-339461 q^4-367677 q^3-129417 q^2+200275 q+401436+285289 q^{-1} -22359 q^{-2} -315639 q^{-3} -380833 q^{-4} -172088 q^{-5} +158867 q^{-6} +390377 q^{-7} +315542 q^{-8} +30850 q^{-9} -276884 q^{-10} -385092 q^{-11} -222905 q^{-12} +93967 q^{-13} +354812 q^{-14} +340790 q^{-15} +105598 q^{-16} -200408 q^{-17} -359716 q^{-18} -273672 q^{-19} -4313 q^{-20} +270203 q^{-21} +332789 q^{-22} +184750 q^{-23} -81286 q^{-24} -277579 q^{-25} -286996 q^{-26} -108523 q^{-27} +137189 q^{-28} +261231 q^{-29} +221127 q^{-30} +42212 q^{-31} -144794 q^{-32} -230111 q^{-33} -162967 q^{-34} +4030 q^{-35} +138022 q^{-36} +181754 q^{-37} +108811 q^{-38} -17260 q^{-39} -121818 q^{-40} -138131 q^{-41} -66608 q^{-42} +24314 q^{-43} +93195 q^{-44} +96047 q^{-45} +45884 q^{-46} -26042 q^{-47} -68586 q^{-48} -61998 q^{-49} -27811 q^{-50} +18929 q^{-51} +44982 q^{-52} +42740 q^{-53} +14474 q^{-54} -13934 q^{-55} -26746 q^{-56} -25751 q^{-57} -9048 q^{-58} +7980 q^{-59} +17739 q^{-60} +13580 q^{-61} +4379 q^{-62} -3668 q^{-63} -9619 q^{-64} -7826 q^{-65} -2672 q^{-66} +3085 q^{-67} +4343 q^{-68} +3579 q^{-69} +1786 q^{-70} -1408 q^{-71} -2378 q^{-72} -1916 q^{-73} -222 q^{-74} +375 q^{-75} +861 q^{-76} +1075 q^{-77} +166 q^{-78} -299 q^{-79} -501 q^{-80} -168 q^{-81} -169 q^{-82} +16 q^{-83} +292 q^{-84} +110 q^{-85} +18 q^{-86} -77 q^{-87} + q^{-88} -72 q^{-89} -51 q^{-90} +55 q^{-91} +19 q^{-92} +15 q^{-93} -13 q^{-94} +17 q^{-95} -10 q^{-96} -19 q^{-97} +9 q^{-98} +3 q^{-100} -3 q^{-101} +3 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math> |
coloured_jones_7 = <math>-q^{140}+3 q^{139}-2 q^{138}-3 q^{137}+6 q^{136}-q^{135}-2 q^{134}-8 q^{133}-q^{132}+25 q^{131}-6 q^{130}-15 q^{129}+11 q^{128}-9 q^{127}-8 q^{126}-34 q^{125}-8 q^{124}+113 q^{123}+50 q^{122}-21 q^{121}-31 q^{120}-137 q^{119}-103 q^{118}-149 q^{117}-23 q^{116}+451 q^{115}+491 q^{114}+318 q^{113}-49 q^{112}-740 q^{111}-969 q^{110}-1121 q^{109}-610 q^{108}+1155 q^{107}+2364 q^{106}+2882 q^{105}+1930 q^{104}-968 q^{103}-3601 q^{102}-6008 q^{101}-6031 q^{100}-1635 q^{99}+4304 q^{98}+10556 q^{97}+13220 q^{96}+8636 q^{95}-463 q^{94}-13353 q^{93}-23673 q^{92}-23275 q^{91}-12545 q^{90}+9142 q^{89}+32659 q^{88}+44420 q^{87}+39575 q^{86}+12071 q^{85}-29499 q^{84}-65205 q^{83}-81143 q^{82}-59083 q^{81}-1221 q^{80}+68789 q^{79}+126227 q^{78}+133437 q^{77}+75698 q^{76}-29758 q^{75}-150480 q^{74}-222562 q^{73}-199339 q^{72}-76206 q^{71}+117808 q^{70}+292893 q^{69}+357405 q^{68}+262171 q^{67}+9059 q^{66}-296859 q^{65}-511236 q^{64}-514971 q^{63}-251172 q^{62}+184864 q^{61}+601362 q^{60}+791184 q^{59}+601389 q^{58}+76731 q^{57}-566306 q^{56}-1025922 q^{55}-1016784 q^{54}-486598 q^{53}+362231 q^{52}+1146031 q^{51}+1427166 q^{50}+1007808 q^{49}+21565 q^{48}-1098365 q^{47}-1756628 q^{46}-1570252 q^{45}-552151 q^{44}+861955 q^{43}+1939263 q^{42}+2094478 q^{41}+1168781 q^{40}-457096 q^{39}-1946542 q^{38}-2511320 q^{37}-1790364 q^{36}-62409 q^{35}+1782232 q^{34}+2777646 q^{33}+2348100 q^{32}+627580 q^{31}-1487424 q^{30}-2886590 q^{29}-2790521 q^{28}-1169337 q^{27}+1116697 q^{26}+2859077 q^{25}+3098896 q^{24}+1637881 q^{23}-729246 q^{22}-2736128 q^{21}-3279440 q^{20}-2006306 q^{19}+370991 q^{18}+2562865 q^{17}+3358549 q^{16}+2271671 q^{15}-70093 q^{14}-2378474 q^{13}-3369639 q^{12}-2449564 q^{11}-165925 q^{10}+2210037 q^9+3346285 q^8+2565024 q^7+344210 q^6-2068490 q^5-3312851 q^4-2646880 q^3-485486 q^2+1951561 q+3285566+2720250 q^{-1} +613441 q^{-2} -1844767 q^{-3} -3265298 q^{-4} -2803510 q^{-5} -755930 q^{-6} +1725179 q^{-7} +3244072 q^{-8} +2904738 q^{-9} +933672 q^{-10} -1565745 q^{-11} -3199562 q^{-12} -3018262 q^{-13} -1161189 q^{-14} +1339105 q^{-15} +3103245 q^{-16} +3124901 q^{-17} +1436714 q^{-18} -1026220 q^{-19} -2921481 q^{-20} -3190950 q^{-21} -1741650 q^{-22} +622231 q^{-23} +2626569 q^{-24} +3174791 q^{-25} +2037596 q^{-26} -144474 q^{-27} -2204755 q^{-28} -3036274 q^{-29} -2272868 q^{-30} -364936 q^{-31} +1668352 q^{-32} +2748218 q^{-33} +2390772 q^{-34} +845475 q^{-35} -1056474 q^{-36} -2311609 q^{-37} -2350485 q^{-38} -1226882 q^{-39} +437263 q^{-40} +1758761 q^{-41} +2134505 q^{-42} +1451632 q^{-43} +114596 q^{-44} -1154315 q^{-45} -1767730 q^{-46} -1489739 q^{-47} -526603 q^{-48} +578157 q^{-49} +1304139 q^{-50} +1350661 q^{-51} +759909 q^{-52} -104316 q^{-53} -823276 q^{-54} -1082708 q^{-55} -811349 q^{-56} -216793 q^{-57} +399165 q^{-58} +754927 q^{-59} +718631 q^{-60} +375651 q^{-61} -84864 q^{-62} -440527 q^{-63} -542380 q^{-64} -396890 q^{-65} -100941 q^{-66} +191169 q^{-67} +345947 q^{-68} +329721 q^{-69} +173728 q^{-70} -29634 q^{-71} -178510 q^{-72} -226960 q^{-73} -168627 q^{-74} -49228 q^{-75} +63240 q^{-76} +128743 q^{-77} +125778 q^{-78} +69607 q^{-79} -611 q^{-80} -57380 q^{-81} -76629 q^{-82} -58416 q^{-83} -22473 q^{-84} +15943 q^{-85} +37795 q^{-86} +37772 q^{-87} +23892 q^{-88} +2286 q^{-89} -14353 q^{-90} -19937 q^{-91} -16983 q^{-92} -6682 q^{-93} +3149 q^{-94} +8249 q^{-95} +9575 q^{-96} +5832 q^{-97} +883 q^{-98} -2678 q^{-99} -4731 q^{-100} -3439 q^{-101} -1268 q^{-102} +305 q^{-103} +1796 q^{-104} +1776 q^{-105} +1116 q^{-106} +293 q^{-107} -816 q^{-108} -800 q^{-109} -460 q^{-110} -287 q^{-111} +158 q^{-112} +262 q^{-113} +325 q^{-114} +276 q^{-115} -116 q^{-116} -152 q^{-117} -79 q^{-118} -96 q^{-119} -4 q^{-120} -6 q^{-121} +52 q^{-122} +104 q^{-123} -10 q^{-124} -26 q^{-125} -9 q^{-126} -19 q^{-127} +3 q^{-128} -15 q^{-129} - q^{-130} +23 q^{-131} + q^{-132} -4 q^{-133} -3 q^{-135} +3 q^{-136} -3 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 104]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 4, 17, 3], X[18, 9, 19, 10], X[14, 7, 15, 8],
X[20, 13, 1, 14], X[8, 17, 9, 18], X[10, 19, 11, 20],
X[12, 6, 13, 5], X[4, 12, 5, 11], X[2, 16, 3, 15]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 104]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -9, 8, -1, 4, -6, 3, -7, 9, -8, 5, -4, 10, -2, 6,
-3, 7, -5]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 104]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 16, 12, 14, 18, 4, 20, 2, 8, 10]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 104]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, 2, 2, -1, 2, -1, 2, 2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 104]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 104]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_104_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 104]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 4, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 104]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 9 15 2 3 4
19 + t - -- + -- - -- - 15 t + 9 t - 4 t + t
3 2 t
t t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 104]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8
1 + z + 5 z + 4 z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 104]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 104]], KnotSignature[Knot[10, 104]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{77, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 104]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 6 10 12 2 3 4 5
13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q
4 3 2 q
q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 71], Knot[10, 104]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 104]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -12 2 2 -6 -4 3 2 4 6 8
-3 - q + q - --- + -- + q - q + -- + 3 q - q + q + 2 q -
10 8 2
q q q
10 12 14
2 q + q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 104]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
-2 2 2 5 z 2 2 4 4 z 2 4 6
3 - a - a + 11 z - ---- - 5 a z + 13 z - ---- - 4 a z + 6 z -
2 2
a a
6
z 2 6 8
-- - a z + z
2
a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 104]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
-2 2 2 z 4 z 3 5 2 2 z 6 z
3 + a + a - --- - --- - 2 a z + a z + a z - 15 z + ---- - ---- -
3 a 4 2
a a a
3 3 3
2 2 4 2 2 z 8 z 13 z 3 3 3 5 3
4 a z + 3 a z - ---- + ---- + ----- + 4 a z - a z - 2 a z +
5 3 a
a a
4 4 5 5 5
4 6 z 12 z 2 4 4 4 z 11 z 12 z
27 z - ---- + ----- + 3 a z - 6 a z + -- - ----- - ----- -
4 2 5 3 a
a a a a
6 6
5 3 5 5 5 6 3 z 11 z 2 6 4 6
6 a z - 5 a z + a z - 22 z + ---- - ----- - 5 a z + 3 a z +
4 2
a a
7 7 8 9
5 z 3 z 7 3 7 8 5 z 2 8 2 z 9
---- + ---- + 2 a z + 4 a z + 9 z + ---- + 4 a z + ---- + 2 a z
3 a 2 a
a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 104]], Vassiliev[3][Knot[10, 104]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 104]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 1 2 1 4 2 6 4
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
6 6 3 3 2 5 2 5 3 7 3
---- + --- + 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + 4 q t +
3 q t
q t
7 4 9 4 11 5
q t + 2 q t + q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 104], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 -13 8 16 3 33 46 7 83 76
154 + q - --- + q + --- - --- + --- + -- - -- - -- + -- - -- -
14 12 11 10 9 8 7 6 5
q q q q q q q q q
37 133 84 70 2 3 4 5 6
-- + --- - -- - -- - 68 q - 86 q + 134 q - 36 q - 78 q + 84 q -
4 3 2 q
q q q
7 8 9 10 11 12 13 14 15
5 q - 49 q + 33 q + 6 q - 18 q + 7 q + 2 q - 3 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:04, 1 September 2005

10 103.gif

10_103

10 105.gif

10_105

10 104.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 104's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 104 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X16,4,17,3 X18,9,19,10 X14,7,15,8 X20,13,1,14 X8,17,9,18 X10,19,11,20 X12,6,13,5 X4,12,5,11 X2,16,3,15
Gauss code 1, -10, 2, -9, 8, -1, 4, -6, 3, -7, 9, -8, 5, -4, 10, -2, 6, -3, 7, -5
Dowker-Thistlethwaite code 6 16 12 14 18 4 20 2 8 10
Conway Notation [3:20:20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 104 ML.gif 10 104 AP.gif
[{5, 11}, {7, 12}, {8, 6}, {4, 7}, {3, 5}, {9, 4}, {10, 8}, {11, 9}, {2, 10}, {1, 3}, {12, 2}, {6, 1}]

[edit Notes on presentations of 10 104]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 14.1071
A-Polynomial See Data:10 104/A-polynomial

[edit Notes for 10 104's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 104's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 77, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {10_71,}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 104. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         2 2
7        41 -3
5       62  4
3      64   -2
1     76    1
-1    67     1
-3   46      -2
-5  26       4
-7 14        -3
-9 2         2
-111          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials