10 109: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_109}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 109 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-1,4,-5,9,-2,3,-7,10,-8,6,-4,5,-3,7,-6/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = [[10_81]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>1</td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{15}-3 q^{14}+2 q^{13}+8 q^{12}-20 q^{11}+6 q^{10}+40 q^9-60 q^8-7 q^7+105 q^6-98 q^5-45 q^4+169 q^3-108 q^2-87 q+195-87 q^{-1} -108 q^{-2} +169 q^{-3} -45 q^{-4} -98 q^{-5} +105 q^{-6} -7 q^{-7} -60 q^{-8} +40 q^{-9} +6 q^{-10} -20 q^{-11} +8 q^{-12} +2 q^{-13} -3 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+3 q^{29}-2 q^{28}-3 q^{27}+q^{26}+13 q^{25}-7 q^{24}-30 q^{23}+11 q^{22}+70 q^{21}-10 q^{20}-133 q^{19}-27 q^{18}+235 q^{17}+97 q^{16}-333 q^{15}-237 q^{14}+421 q^{13}+429 q^{12}-474 q^{11}-643 q^{10}+462 q^9+870 q^8-412 q^7-1055 q^6+306 q^5+1216 q^4-203 q^3-1289 q^2+57 q+1337+57 q^{-1} -1289 q^{-2} -203 q^{-3} +1216 q^{-4} +306 q^{-5} -1055 q^{-6} -412 q^{-7} +870 q^{-8} +462 q^{-9} -643 q^{-10} -474 q^{-11} +429 q^{-12} +421 q^{-13} -237 q^{-14} -333 q^{-15} +97 q^{-16} +235 q^{-17} -27 q^{-18} -133 q^{-19} -10 q^{-20} +70 q^{-21} +11 q^{-22} -30 q^{-23} -7 q^{-24} +13 q^{-25} + q^{-26} -3 q^{-27} -2 q^{-28} +3 q^{-29} - q^{-30} </math> | |
|||
coloured_jones_4 = <math>q^{50}-3 q^{49}+2 q^{48}+3 q^{47}-6 q^{46}+6 q^{45}-12 q^{44}+13 q^{43}+19 q^{42}-37 q^{41}+3 q^{40}-45 q^{39}+75 q^{38}+125 q^{37}-109 q^{36}-108 q^{35}-259 q^{34}+211 q^{33}+581 q^{32}+37 q^{31}-351 q^{30}-1131 q^{29}-41 q^{28}+1474 q^{27}+1097 q^{26}-23 q^{25}-2765 q^{24}-1618 q^{23}+1862 q^{22}+3157 q^{21}+1998 q^{20}-4013 q^{19}-4524 q^{18}+507 q^{17}+4939 q^{16}+5545 q^{15}-3595 q^{14}-7303 q^{13}-2387 q^{12}+5220 q^{11}+9051 q^{10}-1716 q^9-8692 q^8-5391 q^7+4146 q^6+11245 q^5+514 q^4-8632 q^3-7516 q^2+2477 q+11939+2477 q^{-1} -7516 q^{-2} -8632 q^{-3} +514 q^{-4} +11245 q^{-5} +4146 q^{-6} -5391 q^{-7} -8692 q^{-8} -1716 q^{-9} +9051 q^{-10} +5220 q^{-11} -2387 q^{-12} -7303 q^{-13} -3595 q^{-14} +5545 q^{-15} +4939 q^{-16} +507 q^{-17} -4524 q^{-18} -4013 q^{-19} +1998 q^{-20} +3157 q^{-21} +1862 q^{-22} -1618 q^{-23} -2765 q^{-24} -23 q^{-25} +1097 q^{-26} +1474 q^{-27} -41 q^{-28} -1131 q^{-29} -351 q^{-30} +37 q^{-31} +581 q^{-32} +211 q^{-33} -259 q^{-34} -108 q^{-35} -109 q^{-36} +125 q^{-37} +75 q^{-38} -45 q^{-39} +3 q^{-40} -37 q^{-41} +19 q^{-42} +13 q^{-43} -12 q^{-44} +6 q^{-45} -6 q^{-46} +3 q^{-47} +2 q^{-48} -3 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+3 q^{74}-2 q^{73}-3 q^{72}+6 q^{71}-q^{70}-7 q^{69}+6 q^{68}-2 q^{67}-9 q^{66}+24 q^{65}+16 q^{64}-31 q^{63}-29 q^{62}-34 q^{61}-3 q^{60}+117 q^{59}+164 q^{58}+7 q^{57}-240 q^{56}-397 q^{55}-243 q^{54}+366 q^{53}+945 q^{52}+822 q^{51}-266 q^{50}-1712 q^{49}-2127 q^{48}-494 q^{47}+2443 q^{46}+4250 q^{45}+2631 q^{44}-2417 q^{43}-7114 q^{42}-6512 q^{41}+594 q^{40}+9625 q^{39}+12430 q^{38}+4136 q^{37}-10696 q^{36}-19448 q^{35}-12146 q^{34}+8453 q^{33}+26148 q^{32}+23290 q^{31}-2075 q^{30}-30685 q^{29}-35998 q^{28}-8638 q^{27}+31341 q^{26}+48438 q^{25}+22835 q^{24}-27631 q^{23}-58682 q^{22}-38496 q^{21}+19719 q^{20}+65298 q^{19}+53987 q^{18}-9004 q^{17}-68162 q^{16}-67224 q^{15}-3092 q^{14}+67469 q^{13}+77778 q^{12}+14812 q^{11}-64396 q^{10}-84931 q^9-25496 q^8+59690 q^7+89713 q^6+34344 q^5-54379 q^4-91894 q^3-42017 q^2+48392 q+92885+48392 q^{-1} -42017 q^{-2} -91894 q^{-3} -54379 q^{-4} +34344 q^{-5} +89713 q^{-6} +59690 q^{-7} -25496 q^{-8} -84931 q^{-9} -64396 q^{-10} +14812 q^{-11} +77778 q^{-12} +67469 q^{-13} -3092 q^{-14} -67224 q^{-15} -68162 q^{-16} -9004 q^{-17} +53987 q^{-18} +65298 q^{-19} +19719 q^{-20} -38496 q^{-21} -58682 q^{-22} -27631 q^{-23} +22835 q^{-24} +48438 q^{-25} +31341 q^{-26} -8638 q^{-27} -35998 q^{-28} -30685 q^{-29} -2075 q^{-30} +23290 q^{-31} +26148 q^{-32} +8453 q^{-33} -12146 q^{-34} -19448 q^{-35} -10696 q^{-36} +4136 q^{-37} +12430 q^{-38} +9625 q^{-39} +594 q^{-40} -6512 q^{-41} -7114 q^{-42} -2417 q^{-43} +2631 q^{-44} +4250 q^{-45} +2443 q^{-46} -494 q^{-47} -2127 q^{-48} -1712 q^{-49} -266 q^{-50} +822 q^{-51} +945 q^{-52} +366 q^{-53} -243 q^{-54} -397 q^{-55} -240 q^{-56} +7 q^{-57} +164 q^{-58} +117 q^{-59} -3 q^{-60} -34 q^{-61} -29 q^{-62} -31 q^{-63} +16 q^{-64} +24 q^{-65} -9 q^{-66} -2 q^{-67} +6 q^{-68} -7 q^{-69} - q^{-70} +6 q^{-71} -3 q^{-72} -2 q^{-73} +3 q^{-74} - q^{-75} </math> | |
|||
coloured_jones_6 = <math>q^{105}-3 q^{104}+2 q^{103}+3 q^{102}-6 q^{101}+q^{100}+2 q^{99}+13 q^{98}-17 q^{97}-8 q^{96}+22 q^{95}-27 q^{94}+21 q^{92}+71 q^{91}-34 q^{90}-75 q^{89}+16 q^{88}-129 q^{87}-36 q^{86}+126 q^{85}+400 q^{84}+145 q^{83}-158 q^{82}-208 q^{81}-865 q^{80}-703 q^{79}+55 q^{78}+1611 q^{77}+1858 q^{76}+1210 q^{75}+101 q^{74}-3327 q^{73}-4931 q^{72}-3798 q^{71}+1805 q^{70}+6774 q^{69}+9727 q^{68}+8450 q^{67}-2638 q^{66}-14630 q^{65}-21452 q^{64}-13030 q^{63}+4180 q^{62}+26230 q^{61}+40159 q^{60}+25383 q^{59}-9352 q^{58}-50139 q^{57}-63640 q^{56}-43374 q^{55}+15871 q^{54}+84539 q^{53}+105774 q^{52}+63311 q^{51}-36248 q^{50}-126670 q^{49}-161655 q^{48}-88027 q^{47}+66592 q^{46}+197978 q^{45}+224393 q^{44}+97674 q^{43}-106500 q^{42}-289269 q^{41}-295599 q^{40}-95461 q^{39}+189377 q^{38}+390494 q^{37}+345386 q^{36}+74611 q^{35}-302530 q^{34}-502861 q^{33}-374848 q^{32}+13010 q^{31}+434079 q^{30}+586654 q^{29}+368325 q^{28}-149880 q^{27}-585134 q^{26}-640685 q^{25}-265026 q^{24}+320369 q^{23}+705269 q^{22}+640606 q^{21}+91283 q^{20}-522554 q^{19}-789043 q^{18}-516704 q^{17}+130277 q^{16}+693197 q^{15}+803318 q^{14}+306604 q^{13}-392185 q^{12}-820783 q^{11}-673048 q^{10}-40674 q^9+619164 q^8+865087 q^7+447497 q^6-268553 q^5-795142 q^4-750697 q^3-163412 q^2+538093 q+877141+538093 q^{-1} -163412 q^{-2} -750697 q^{-3} -795142 q^{-4} -268553 q^{-5} +447497 q^{-6} +865087 q^{-7} +619164 q^{-8} -40674 q^{-9} -673048 q^{-10} -820783 q^{-11} -392185 q^{-12} +306604 q^{-13} +803318 q^{-14} +693197 q^{-15} +130277 q^{-16} -516704 q^{-17} -789043 q^{-18} -522554 q^{-19} +91283 q^{-20} +640606 q^{-21} +705269 q^{-22} +320369 q^{-23} -265026 q^{-24} -640685 q^{-25} -585134 q^{-26} -149880 q^{-27} +368325 q^{-28} +586654 q^{-29} +434079 q^{-30} +13010 q^{-31} -374848 q^{-32} -502861 q^{-33} -302530 q^{-34} +74611 q^{-35} +345386 q^{-36} +390494 q^{-37} +189377 q^{-38} -95461 q^{-39} -295599 q^{-40} -289269 q^{-41} -106500 q^{-42} +97674 q^{-43} +224393 q^{-44} +197978 q^{-45} +66592 q^{-46} -88027 q^{-47} -161655 q^{-48} -126670 q^{-49} -36248 q^{-50} +63311 q^{-51} +105774 q^{-52} +84539 q^{-53} +15871 q^{-54} -43374 q^{-55} -63640 q^{-56} -50139 q^{-57} -9352 q^{-58} +25383 q^{-59} +40159 q^{-60} +26230 q^{-61} +4180 q^{-62} -13030 q^{-63} -21452 q^{-64} -14630 q^{-65} -2638 q^{-66} +8450 q^{-67} +9727 q^{-68} +6774 q^{-69} +1805 q^{-70} -3798 q^{-71} -4931 q^{-72} -3327 q^{-73} +101 q^{-74} +1210 q^{-75} +1858 q^{-76} +1611 q^{-77} +55 q^{-78} -703 q^{-79} -865 q^{-80} -208 q^{-81} -158 q^{-82} +145 q^{-83} +400 q^{-84} +126 q^{-85} -36 q^{-86} -129 q^{-87} +16 q^{-88} -75 q^{-89} -34 q^{-90} +71 q^{-91} +21 q^{-92} -27 q^{-94} +22 q^{-95} -8 q^{-96} -17 q^{-97} +13 q^{-98} +2 q^{-99} + q^{-100} -6 q^{-101} +3 q^{-102} +2 q^{-103} -3 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>-q^{140}+3 q^{139}-2 q^{138}-3 q^{137}+6 q^{136}-q^{135}-2 q^{134}-8 q^{133}-2 q^{132}+27 q^{131}-5 q^{130}-19 q^{129}+11 q^{128}-6 q^{127}-3 q^{126}-39 q^{125}-21 q^{124}+123 q^{123}+54 q^{122}-28 q^{121}-19 q^{120}-113 q^{119}-83 q^{118}-202 q^{117}-127 q^{116}+423 q^{115}+523 q^{114}+433 q^{113}+187 q^{112}-528 q^{111}-932 q^{110}-1542 q^{109}-1445 q^{108}+481 q^{107}+2262 q^{106}+3828 q^{105}+3942 q^{104}+1189 q^{103}-2557 q^{102}-7683 q^{101}-10796 q^{100}-7503 q^{99}+356 q^{98}+12216 q^{97}+22258 q^{96}+22340 q^{95}+11840 q^{94}-11241 q^{93}-37619 q^{92}-50791 q^{91}-43098 q^{90}-6817 q^{89}+46720 q^{88}+90727 q^{87}+103530 q^{86}+62047 q^{85}-27592 q^{84}-127434 q^{83}-194314 q^{82}-174586 q^{81}-54007 q^{80}+125828 q^{79}+294953 q^{78}+350927 q^{77}+235030 q^{76}-29753 q^{75}-353701 q^{74}-569223 q^{73}-535658 q^{72}-219825 q^{71}+291598 q^{70}+761077 q^{69}+932844 q^{68}+663707 q^{67}-16844 q^{66}-821391 q^{65}-1351760 q^{64}-1288831 q^{63}-532987 q^{62}+629230 q^{61}+1660551 q^{60}+2013990 q^{59}+1366120 q^{58}-89043 q^{57}-1713017 q^{56}-2697937 q^{55}-2404293 q^{54}-825147 q^{53}+1383588 q^{52}+3167221 q^{51}+3501745 q^{50}+2054700 q^{49}-619529 q^{48}-3275526 q^{47}-4475059 q^{46}-3455196 q^{45}-538986 q^{44}+2940592 q^{43}+5154249 q^{42}+4842520 q^{41}+1968432 q^{40}-2175340 q^{39}-5435305 q^{38}-6036651 q^{37}-3489453 q^{36}+1077612 q^{35}+5294987 q^{34}+6908832 q^{33}+4926397 q^{32}+200479 q^{31}-4798379 q^{30}-7408002 q^{29}-6137036 q^{28}-1494262 q^{27}+4059766 q^{26}+7557368 q^{25}+7049027 q^{24}+2668753 q^{23}-3217285 q^{22}-7435250 q^{21}-7652071 q^{20}-3640243 q^{19}+2387724 q^{18}+7144243 q^{17}+7993632 q^{16}+4380913 q^{15}-1655058 q^{14}-6781116 q^{13}-8143362 q^{12}-4913199 q^{11}+1050675 q^{10}+6420493 q^9+8184351 q^8+5287929 q^7-573356 q^6-6100215 q^5-8177528 q^4-5571466 q^3+179641 q^2+5825888 q+8172629+5825888 q^{-1} +179641 q^{-2} -5571466 q^{-3} -8177528 q^{-4} -6100215 q^{-5} -573356 q^{-6} +5287929 q^{-7} +8184351 q^{-8} +6420493 q^{-9} +1050675 q^{-10} -4913199 q^{-11} -8143362 q^{-12} -6781116 q^{-13} -1655058 q^{-14} +4380913 q^{-15} +7993632 q^{-16} +7144243 q^{-17} +2387724 q^{-18} -3640243 q^{-19} -7652071 q^{-20} -7435250 q^{-21} -3217285 q^{-22} +2668753 q^{-23} +7049027 q^{-24} +7557368 q^{-25} +4059766 q^{-26} -1494262 q^{-27} -6137036 q^{-28} -7408002 q^{-29} -4798379 q^{-30} +200479 q^{-31} +4926397 q^{-32} +6908832 q^{-33} +5294987 q^{-34} +1077612 q^{-35} -3489453 q^{-36} -6036651 q^{-37} -5435305 q^{-38} -2175340 q^{-39} +1968432 q^{-40} +4842520 q^{-41} +5154249 q^{-42} +2940592 q^{-43} -538986 q^{-44} -3455196 q^{-45} -4475059 q^{-46} -3275526 q^{-47} -619529 q^{-48} +2054700 q^{-49} +3501745 q^{-50} +3167221 q^{-51} +1383588 q^{-52} -825147 q^{-53} -2404293 q^{-54} -2697937 q^{-55} -1713017 q^{-56} -89043 q^{-57} +1366120 q^{-58} +2013990 q^{-59} +1660551 q^{-60} +629230 q^{-61} -532987 q^{-62} -1288831 q^{-63} -1351760 q^{-64} -821391 q^{-65} -16844 q^{-66} +663707 q^{-67} +932844 q^{-68} +761077 q^{-69} +291598 q^{-70} -219825 q^{-71} -535658 q^{-72} -569223 q^{-73} -353701 q^{-74} -29753 q^{-75} +235030 q^{-76} +350927 q^{-77} +294953 q^{-78} +125828 q^{-79} -54007 q^{-80} -174586 q^{-81} -194314 q^{-82} -127434 q^{-83} -27592 q^{-84} +62047 q^{-85} +103530 q^{-86} +90727 q^{-87} +46720 q^{-88} -6817 q^{-89} -43098 q^{-90} -50791 q^{-91} -37619 q^{-92} -11241 q^{-93} +11840 q^{-94} +22340 q^{-95} +22258 q^{-96} +12216 q^{-97} +356 q^{-98} -7503 q^{-99} -10796 q^{-100} -7683 q^{-101} -2557 q^{-102} +1189 q^{-103} +3942 q^{-104} +3828 q^{-105} +2262 q^{-106} +481 q^{-107} -1445 q^{-108} -1542 q^{-109} -932 q^{-110} -528 q^{-111} +187 q^{-112} +433 q^{-113} +523 q^{-114} +423 q^{-115} -127 q^{-116} -202 q^{-117} -83 q^{-118} -113 q^{-119} -19 q^{-120} -28 q^{-121} +54 q^{-122} +123 q^{-123} -21 q^{-124} -39 q^{-125} -3 q^{-126} -6 q^{-127} +11 q^{-128} -19 q^{-129} -5 q^{-130} +27 q^{-131} -2 q^{-132} -8 q^{-133} -2 q^{-134} - q^{-135} +6 q^{-136} -3 q^{-137} -2 q^{-138} +3 q^{-139} - q^{-140} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 109]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[18, 11, 19, 12], X[16, 7, 17, 8], |
|||
X[8, 17, 9, 18], X[20, 15, 1, 16], X[12, 19, 13, 20], |
|||
X[14, 6, 15, 5], X[2, 10, 3, 9], X[4, 14, 5, 13]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 109]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 10, -8, 6, -4, 5, |
|||
-3, 7, -6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 109]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 16, 2, 18, 4, 20, 8, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 109]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, 2, 2, -1, -1, 2, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 109]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 109]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_109_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 109]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{NegativeAmphicheiral, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 109]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 10 17 2 3 4 |
|||
21 + t - -- + -- - -- - 17 t + 10 t - 4 t + t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 109]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 3 z + 6 z + 4 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 109]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 109]], KnotSignature[Knot[10, 109]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{85, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 109]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 7 11 13 2 3 4 5 |
|||
15 - q + -- - -- + -- - -- - 13 q + 11 q - 7 q + 3 q - q |
|||
4 3 2 q |
|||
q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 81], Knot[10, 109]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 109]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -12 3 -8 -4 5 2 4 8 10 |
|||
-1 - q + q - --- + q - q + -- + 5 q - q + q - 3 q + |
|||
10 2 |
|||
q q |
|||
12 14 |
|||
q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 109]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
3 2 2 6 z 2 2 4 4 z 2 4 |
|||
7 - -- - 3 a + 15 z - ---- - 6 a z + 14 z - ---- - 4 a z + |
|||
2 2 2 |
|||
a a a |
|||
6 |
|||
6 z 2 6 8 |
|||
6 z - -- - a z + z |
|||
2 |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 109]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
3 2 z z 5 z 3 5 2 2 z |
|||
7 + -- + 3 a + -- - -- - --- - 5 a z - a z + a z - 18 z + ---- - |
|||
2 5 3 a 4 |
|||
a a a a |
|||
2 3 3 3 |
|||
7 z 2 2 4 2 2 z 4 z 13 z 3 3 3 |
|||
---- - 7 a z + 2 a z - ---- + ---- + ----- + 13 a z + 4 a z - |
|||
2 5 3 a |
|||
a a a |
|||
4 4 5 5 |
|||
5 3 4 5 z 6 z 2 4 4 4 z 8 z |
|||
2 a z + 22 z - ---- + ---- + 6 a z - 5 a z + -- - ---- - |
|||
4 2 5 3 |
|||
a a a a |
|||
5 6 6 |
|||
16 z 5 3 5 5 5 6 3 z 7 z 2 6 |
|||
----- - 16 a z - 8 a z + a z - 20 z + ---- - ---- - 7 a z + |
|||
a 4 2 |
|||
a a |
|||
7 7 8 |
|||
4 6 5 z 6 z 7 3 7 8 5 z 2 8 |
|||
3 a z + ---- + ---- + 6 a z + 5 a z + 10 z + ---- + 5 a z + |
|||
3 a 2 |
|||
a a |
|||
9 |
|||
2 z 9 |
|||
---- + 2 a z |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 109]], Vassiliev[3][Knot[10, 109]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 109]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>8 1 2 1 5 2 6 5 |
|||
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
|||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
|||
q t q t q t q t q t q t q t |
|||
7 6 3 3 2 5 2 5 3 7 3 |
|||
---- + --- + 6 q t + 7 q t + 5 q t + 6 q t + 2 q t + 5 q t + |
|||
3 q t |
|||
q t |
|||
7 4 9 4 11 5 |
|||
q t + 2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 109], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 2 8 20 6 40 60 7 105 98 |
|||
195 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - -- - |
|||
14 13 12 11 10 9 8 7 6 5 |
|||
q q q q q q q q q q |
|||
45 169 108 87 2 3 4 5 |
|||
-- + --- - --- - -- - 87 q - 108 q + 169 q - 45 q - 98 q + |
|||
4 3 2 q |
|||
q q q |
|||
6 7 8 9 10 11 12 13 |
|||
105 q - 7 q - 60 q + 40 q + 6 q - 20 q + 8 q + 2 q - |
|||
14 15 |
|||
3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 109's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X10,4,11,3 X18,11,19,12 X16,7,17,8 X8,17,9,18 X20,15,1,16 X12,19,13,20 X14,6,15,5 X2,10,3,9 X4,14,5,13 |
Gauss code | 1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 10, -8, 6, -4, 5, -3, 7, -6 |
Dowker-Thistlethwaite code | 6 10 14 16 2 18 4 20 8 12 |
Conway Notation | [2.2.2.2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 13}, {2, 6}, {4, 7}, {6, 12}, {5, 3}, {1, 4}, {13, 11}, {12, 8}, {7, 9}, {8, 10}, {9, 5}, {11, 2}, {10, 1}] |
[edit Notes on presentations of 10 109]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 109"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X10,4,11,3 X18,11,19,12 X16,7,17,8 X8,17,9,18 X20,15,1,16 X12,19,13,20 X14,6,15,5 X2,10,3,9 X4,14,5,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 10, -8, 6, -4, 5, -3, 7, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 16 2 18 4 20 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2.2.2.2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 13}, {2, 6}, {4, 7}, {6, 12}, {5, 3}, {1, 4}, {13, 11}, {12, 8}, {7, 9}, {8, 10}, {9, 5}, {11, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 109"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_81,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 109"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_81,} |
Vassiliev invariants
V2 and V3: | (3, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 109. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|