10 129: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_129}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 129 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,9,-10,2,5,-6,7,-8,-9,3,4,-5,8,-7,6,-4/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[8_8]], [[K11n39]], [[K11n45]], [[K11n50]], [[K11n132]], | |
|||
same_jones = [[8_8]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>-q^8+2 q^7+q^6-6 q^5+4 q^4+6 q^3-13 q^2+4 q+14-17 q^{-1} +2 q^{-2} +16 q^{-3} -15 q^{-4} -2 q^{-5} +15 q^{-6} -9 q^{-7} -6 q^{-8} +11 q^{-9} -3 q^{-10} -6 q^{-11} +5 q^{-12} -2 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>q^{19}-q^{18}-q^{17}-2 q^{16}+4 q^{15}+4 q^{14}-3 q^{13}-10 q^{12}+q^{11}+16 q^{10}+5 q^9-21 q^8-14 q^7+24 q^6+23 q^5-23 q^4-35 q^3+25 q^2+37 q-15-47 q^{-1} +18 q^{-2} +43 q^{-3} -9 q^{-4} -46 q^{-5} +8 q^{-6} +39 q^{-7} +2 q^{-8} -36 q^{-9} -6 q^{-10} +27 q^{-11} +14 q^{-12} -20 q^{-13} -17 q^{-14} +9 q^{-15} +19 q^{-16} - q^{-17} -18 q^{-18} -4 q^{-19} +12 q^{-20} +8 q^{-21} -8 q^{-22} -7 q^{-23} +4 q^{-24} +5 q^{-25} -2 q^{-26} -2 q^{-27} +2 q^{-29} - q^{-30} </math> | |
|||
coloured_jones_4 = <math>-q^{32}+q^{31}+2 q^{30}-q^{28}-7 q^{27}-q^{26}+9 q^{25}+9 q^{24}+5 q^{23}-21 q^{22}-22 q^{21}+7 q^{20}+28 q^{19}+40 q^{18}-18 q^{17}-62 q^{16}-31 q^{15}+27 q^{14}+99 q^{13}+27 q^{12}-86 q^{11}-93 q^{10}-17 q^9+146 q^8+97 q^7-79 q^6-139 q^5-77 q^4+162 q^3+148 q^2-59 q-150-121 q^{-1} +156 q^{-2} +170 q^{-3} -42 q^{-4} -143 q^{-5} -139 q^{-6} +138 q^{-7} +168 q^{-8} -23 q^{-9} -117 q^{-10} -145 q^{-11} +101 q^{-12} +147 q^{-13} +5 q^{-14} -70 q^{-15} -140 q^{-16} +46 q^{-17} +102 q^{-18} +31 q^{-19} -6 q^{-20} -111 q^{-21} -3 q^{-22} +40 q^{-23} +28 q^{-24} +44 q^{-25} -56 q^{-26} -17 q^{-27} -10 q^{-28} - q^{-29} +51 q^{-30} -11 q^{-31} -19 q^{-33} -22 q^{-34} +27 q^{-35} +2 q^{-36} +12 q^{-37} -7 q^{-38} -18 q^{-39} +9 q^{-40} - q^{-41} +7 q^{-42} -7 q^{-44} +3 q^{-45} - q^{-46} +2 q^{-47} -2 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{46}+3 q^{44}+2 q^{43}-q^{42}-3 q^{41}-10 q^{40}-6 q^{39}+11 q^{38}+20 q^{37}+15 q^{36}-q^{35}-33 q^{34}-48 q^{33}-13 q^{32}+39 q^{31}+76 q^{30}+61 q^{29}-20 q^{28}-112 q^{27}-125 q^{26}-28 q^{25}+121 q^{24}+202 q^{23}+114 q^{22}-97 q^{21}-273 q^{20}-229 q^{19}+38 q^{18}+317 q^{17}+352 q^{16}+60 q^{15}-334 q^{14}-465 q^{13}-174 q^{12}+317 q^{11}+557 q^{10}+290 q^9-287 q^8-617 q^7-376 q^6+226 q^5+658 q^4+461 q^3-201 q^2-669 q-489+141 q^{-1} +671 q^{-2} +542 q^{-3} -136 q^{-4} -662 q^{-5} -537 q^{-6} +89 q^{-7} +647 q^{-8} +563 q^{-9} -77 q^{-10} -623 q^{-11} -550 q^{-12} +29 q^{-13} +579 q^{-14} +563 q^{-15} +8 q^{-16} -523 q^{-17} -539 q^{-18} -76 q^{-19} +440 q^{-20} +524 q^{-21} +131 q^{-22} -338 q^{-23} -471 q^{-24} -195 q^{-25} +221 q^{-26} +407 q^{-27} +229 q^{-28} -107 q^{-29} -306 q^{-30} -242 q^{-31} +3 q^{-32} +206 q^{-33} +214 q^{-34} +63 q^{-35} -101 q^{-36} -158 q^{-37} -97 q^{-38} +20 q^{-39} +92 q^{-40} +90 q^{-41} +27 q^{-42} -29 q^{-43} -56 q^{-44} -48 q^{-45} -10 q^{-46} +22 q^{-47} +35 q^{-48} +30 q^{-49} +5 q^{-50} -16 q^{-51} -27 q^{-52} -20 q^{-53} +20 q^{-55} +16 q^{-56} +8 q^{-57} -4 q^{-58} -16 q^{-59} -9 q^{-60} +3 q^{-61} +7 q^{-62} +3 q^{-63} +3 q^{-64} -2 q^{-65} -6 q^{-66} + q^{-67} +3 q^{-68} - q^{-69} + q^{-71} -2 q^{-72} +2 q^{-74} - q^{-75} </math> | |
|||
coloured_jones_6 = <math>q^{68}-q^{67}-q^{66}-q^{63}-q^{62}+8 q^{61}+3 q^{60}-2 q^{58}-7 q^{57}-17 q^{56}-19 q^{55}+15 q^{54}+26 q^{53}+33 q^{52}+31 q^{51}+6 q^{50}-57 q^{49}-101 q^{48}-53 q^{47}+2 q^{46}+80 q^{45}+153 q^{44}+163 q^{43}+14 q^{42}-179 q^{41}-245 q^{40}-233 q^{39}-74 q^{38}+217 q^{37}+471 q^{36}+388 q^{35}+45 q^{34}-320 q^{33}-625 q^{32}-618 q^{31}-126 q^{30}+597 q^{29}+927 q^{28}+714 q^{27}+91 q^{26}-775 q^{25}-1321 q^{24}-937 q^{23}+201 q^{22}+1199 q^{21}+1506 q^{20}+943 q^{19}-417 q^{18}-1742 q^{17}-1816 q^{16}-567 q^{15}+1016 q^{14}+1994 q^{13}+1790 q^{12}+223 q^{11}-1750 q^{10}-2370 q^9-1262 q^8+627 q^7+2093 q^6+2300 q^5+753 q^4-1567 q^3-2560 q^2-1653 q+328+2011 q^{-1} +2484 q^{-2} +1033 q^{-3} -1404 q^{-4} -2568 q^{-5} -1804 q^{-6} +166 q^{-7} +1912 q^{-8} +2518 q^{-9} +1160 q^{-10} -1270 q^{-11} -2515 q^{-12} -1875 q^{-13} +33 q^{-14} +1776 q^{-15} +2495 q^{-16} +1283 q^{-17} -1047 q^{-18} -2367 q^{-19} -1941 q^{-20} -213 q^{-21} +1474 q^{-22} +2374 q^{-23} +1467 q^{-24} -608 q^{-25} -1998 q^{-26} -1941 q^{-27} -607 q^{-28} +895 q^{-29} +2018 q^{-30} +1615 q^{-31} +31 q^{-32} -1316 q^{-33} -1696 q^{-34} -976 q^{-35} +112 q^{-36} +1328 q^{-37} +1484 q^{-38} +609 q^{-39} -447 q^{-40} -1093 q^{-41} -1003 q^{-42} -535 q^{-43} +470 q^{-44} +948 q^{-45} +762 q^{-46} +222 q^{-47} -337 q^{-48} -588 q^{-49} -682 q^{-50} -135 q^{-51} +275 q^{-52} +449 q^{-53} +365 q^{-54} +138 q^{-55} -69 q^{-56} -385 q^{-57} -231 q^{-58} -100 q^{-59} +67 q^{-60} +136 q^{-61} +162 q^{-62} +157 q^{-63} -77 q^{-64} -52 q^{-65} -96 q^{-66} -55 q^{-67} -49 q^{-68} +12 q^{-69} +101 q^{-70} +5 q^{-71} +48 q^{-72} +2 q^{-73} -57 q^{-75} -43 q^{-76} +21 q^{-77} -22 q^{-78} +29 q^{-79} +20 q^{-80} +34 q^{-81} -15 q^{-82} -24 q^{-83} +7 q^{-84} -24 q^{-85} + q^{-86} +4 q^{-87} +21 q^{-88} -2 q^{-89} -7 q^{-90} +8 q^{-91} -9 q^{-92} -2 q^{-93} -2 q^{-94} +8 q^{-95} -2 q^{-96} -4 q^{-97} +5 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 129]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[20, 16, 1, 15], |
|||
X[16, 10, 17, 9], X[10, 20, 11, 19], X[18, 12, 19, 11], |
|||
X[12, 18, 13, 17], X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 129]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, |
|||
-7, 6, -4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 129]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 2, -16, -18, 6, -20, -12, -10]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 129]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, -1, -1, 3, -2, -1, 3, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 129]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 129]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_129_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 129]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 129]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 2 |
|||
9 + -- - - - 6 t + 2 t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 129]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 2 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39], |
|||
Knot[11, NonAlternating, 45], Knot[11, NonAlternating, 50], |
|||
Knot[11, NonAlternating, 132]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 129]], KnotSignature[Knot[10, 129]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{25, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 129]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 3 4 4 2 3 |
|||
5 - q + -- - -- + -- - - - 3 q + 2 q - q |
|||
4 3 2 q |
|||
q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 8], Knot[10, 129]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 129]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -10 -8 -4 2 2 4 10 |
|||
1 - q - q + q + q + -- + 2 q - q - q |
|||
2 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 129]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 4 2 z 2 2 4 2 4 2 4 |
|||
2 - a + a - a + 2 z - -- + 2 a z - a z + z + a z |
|||
2 |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 129]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 4 2 z 5 z 3 5 2 3 z |
|||
2 + a - a - a - --- - --- - 5 a z - a z + a z - 4 z - ---- + |
|||
3 a 2 |
|||
a a |
|||
3 3 |
|||
2 2 4 2 z 9 z 3 3 3 5 3 4 |
|||
2 a z + 3 a z + -- + ---- + 15 a z + 4 a z - 3 a z + 8 z + |
|||
3 a |
|||
a |
|||
4 5 |
|||
2 z 4 4 4 z 5 3 5 5 5 6 2 6 |
|||
---- - 6 a z - ---- - 11 a z - 6 a z + a z - 4 z - 2 a z + |
|||
2 a |
|||
a |
|||
7 |
|||
4 6 z 7 3 7 8 2 8 |
|||
2 a z + -- + 3 a z + 2 a z + z + a z |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 129]], Vassiliev[3][Knot[10, 129]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 129]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 1 1 2 1 2 2 |
|||
- + 3 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
|||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
|||
q t q t q t q t q t q t q t |
|||
2 2 3 3 2 5 2 7 3 |
|||
---- + --- + q t + 2 q t + q t + q t + q t |
|||
3 q t |
|||
q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 129], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 5 6 3 11 6 9 15 2 15 16 |
|||
14 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- + |
|||
14 12 11 10 9 8 7 6 5 4 3 |
|||
q q q q q q q q q q q |
|||
2 17 2 3 4 5 6 7 8 |
|||
-- - -- + 4 q - 13 q + 6 q + 4 q - 6 q + q + 2 q - q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 129's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X10,20,11,19 X18,12,19,11 X12,18,13,17 X13,6,14,7 X7283 |
Gauss code | -1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, -4 |
Dowker-Thistlethwaite code | 4 8 14 2 -16 -18 6 -20 -12 -10 |
Conway Notation | [32,21,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {5, 1}, {4, 6}, {7, 5}, {6, 9}, {3, 7}, {11, 4}] |
[edit Notes on presentations of 10 129]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 129"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X10,20,11,19 X18,12,19,11 X12,18,13,17 X13,6,14,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 -16 -18 6 -20 -12 -10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[32,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {5, 1}, {4, 6}, {7, 5}, {6, 9}, {3, 7}, {11, 4}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 129"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_8, K11n39, K11n45, K11n50, K11n132,}
Same Jones Polynomial (up to mirroring, ): {8_8,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 129"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_8, K11n39, K11n45, K11n50, K11n132,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{8_8,} |
Vassiliev invariants
V2 and V3: | (2, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 129. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|