10 155: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 155 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,6,-5,1,-2,9,-7,3,-6,-10,8,5,-4,2,-9,7,10,-8/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=155|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,6,-5,1,-2,9,-7,3,-6,-10,8,5,-4,2,-9,7,10,-8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[8_9]], [[K11n37]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = [[10_137]], [[K11n37]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[8_9]], [[K11n37]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_137]], [[K11n37]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=7.69231%>6</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 69: | Line 37: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{18}-2 q^{17}-q^{16}+6 q^{15}-3 q^{14}-7 q^{13}+10 q^{12}-13 q^{10}+11 q^9+5 q^8-15 q^7+8 q^6+9 q^5-15 q^4+3 q^3+11 q^2-11 q+1+7 q^{-1} -5 q^{-2} + q^{-4} - q^{-5} + q^{-6} </math> | |
|||
coloured_jones_3 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+5 q^{32}-2 q^{31}-9 q^{30}-2 q^{29}+12 q^{28}+8 q^{27}-11 q^{26}-16 q^{25}+8 q^{24}+20 q^{23}-22 q^{21}-7 q^{20}+20 q^{19}+13 q^{18}-14 q^{17}-19 q^{16}+8 q^{15}+22 q^{14}-26 q^{12}-6 q^{11}+27 q^{10}+14 q^9-30 q^8-20 q^7+31 q^6+24 q^5-27 q^4-30 q^3+24 q^2+28 q-11-28 q^{-1} +7 q^{-2} +18 q^{-3} +2 q^{-4} -12 q^{-5} -4 q^{-6} +4 q^{-7} +5 q^{-8} -2 q^{-9} - q^{-10} -2 q^{-11} +2 q^{-12} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{18}-2 q^{17}-q^{16}+6 q^{15}-3 q^{14}-7 q^{13}+10 q^{12}-13 q^{10}+11 q^9+5 q^8-15 q^7+8 q^6+9 q^5-15 q^4+3 q^3+11 q^2-11 q+1+7 q^{-1} -5 q^{-2} + q^{-4} - q^{-5} + q^{-6} </math>|J3=<math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+5 q^{32}-2 q^{31}-9 q^{30}-2 q^{29}+12 q^{28}+8 q^{27}-11 q^{26}-16 q^{25}+8 q^{24}+20 q^{23}-22 q^{21}-7 q^{20}+20 q^{19}+13 q^{18}-14 q^{17}-19 q^{16}+8 q^{15}+22 q^{14}-26 q^{12}-6 q^{11}+27 q^{10}+14 q^9-30 q^8-20 q^7+31 q^6+24 q^5-27 q^4-30 q^3+24 q^2+28 q-11-28 q^{-1} +7 q^{-2} +18 q^{-3} +2 q^{-4} -12 q^{-5} -4 q^{-6} +4 q^{-7} +5 q^{-8} -2 q^{-9} - q^{-10} -2 q^{-11} +2 q^{-12} </math>|J4=<math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+6 q^{55}-6 q^{54}-7 q^{53}-2 q^{52}-2 q^{51}+23 q^{50}+3 q^{49}-7 q^{48}-15 q^{47}-28 q^{46}+25 q^{45}+19 q^{44}+22 q^{43}-2 q^{42}-57 q^{41}-5 q^{40}+q^{39}+45 q^{38}+44 q^{37}-41 q^{36}-23 q^{35}-51 q^{34}+18 q^{33}+73 q^{32}+9 q^{31}+8 q^{30}-85 q^{29}-43 q^{28}+56 q^{27}+50 q^{26}+67 q^{25}-81 q^{24}-97 q^{23}+14 q^{22}+66 q^{21}+120 q^{20}-60 q^{19}-134 q^{18}-26 q^{17}+77 q^{16}+158 q^{15}-43 q^{14}-163 q^{13}-58 q^{12}+88 q^{11}+188 q^{10}-22 q^9-185 q^8-92 q^7+81 q^6+204 q^5+17 q^4-169 q^3-119 q^2+35 q+178+60 q^{-1} -101 q^{-2} -106 q^{-3} -19 q^{-4} +100 q^{-5} +61 q^{-6} -27 q^{-7} -51 q^{-8} -33 q^{-9} +30 q^{-10} +28 q^{-11} + q^{-12} -9 q^{-13} -15 q^{-14} +5 q^{-15} +5 q^{-16} + q^{-17} -4 q^{-19} + q^{-20} + q^{-21} </math>|J5=<math>q^{90}-2 q^{89}-q^{88}+2 q^{87}+q^{86}+2 q^{85}+2 q^{84}-4 q^{83}-9 q^{82}-2 q^{81}+3 q^{80}+8 q^{79}+15 q^{78}+8 q^{77}-11 q^{76}-24 q^{75}-20 q^{74}-8 q^{73}+21 q^{72}+42 q^{71}+33 q^{70}-2 q^{69}-41 q^{68}-60 q^{67}-40 q^{66}+16 q^{65}+70 q^{64}+82 q^{63}+34 q^{62}-44 q^{61}-100 q^{60}-94 q^{59}-20 q^{58}+82 q^{57}+135 q^{56}+94 q^{55}-15 q^{54}-128 q^{53}-168 q^{52}-80 q^{51}+78 q^{50}+198 q^{49}+180 q^{48}+20 q^{47}-181 q^{46}-262 q^{45}-139 q^{44}+120 q^{43}+306 q^{42}+252 q^{41}-19 q^{40}-310 q^{39}-356 q^{38}-88 q^{37}+280 q^{36}+428 q^{35}+201 q^{34}-230 q^{33}-479 q^{32}-298 q^{31}+175 q^{30}+506 q^{29}+382 q^{28}-122 q^{27}-530 q^{26}-444 q^{25}+78 q^{24}+548 q^{23}+500 q^{22}-50 q^{21}-573 q^{20}-546 q^{19}+29 q^{18}+600 q^{17}+594 q^{16}-6 q^{15}-626 q^{14}-648 q^{13}-22 q^{12}+638 q^{11}+690 q^{10}+84 q^9-616 q^8-740 q^7-152 q^6+560 q^5+734 q^4+242 q^3-445 q^2-706 q-311+320 q^{-1} +600 q^{-2} +344 q^{-3} -166 q^{-4} -472 q^{-5} -327 q^{-6} +54 q^{-7} +312 q^{-8} +270 q^{-9} +18 q^{-10} -180 q^{-11} -181 q^{-12} -46 q^{-13} +78 q^{-14} +110 q^{-15} +40 q^{-16} -34 q^{-17} -44 q^{-18} -22 q^{-19} +4 q^{-20} +20 q^{-21} +12 q^{-22} -8 q^{-23} -4 q^{-24} +2 q^{-27} +2 q^{-28} -4 q^{-29} + q^{-32} </math>|J6=<math>q^{126}-2 q^{125}-q^{124}+2 q^{123}+q^{122}+2 q^{121}-2 q^{120}+4 q^{119}-6 q^{118}-9 q^{117}+q^{116}+2 q^{115}+10 q^{114}+3 q^{113}+21 q^{112}-3 q^{111}-19 q^{110}-19 q^{109}-23 q^{108}-6 q^{107}-7 q^{106}+60 q^{105}+43 q^{104}+27 q^{103}+q^{102}-42 q^{101}-68 q^{100}-109 q^{99}+35 q^{97}+101 q^{96}+122 q^{95}+98 q^{94}+5 q^{93}-165 q^{92}-148 q^{91}-172 q^{90}-50 q^{89}+86 q^{88}+250 q^{87}+276 q^{86}+94 q^{85}-16 q^{84}-262 q^{83}-338 q^{82}-307 q^{81}-16 q^{80}+273 q^{79}+384 q^{78}+453 q^{77}+165 q^{76}-186 q^{75}-573 q^{74}-562 q^{73}-294 q^{72}+95 q^{71}+628 q^{70}+768 q^{69}+534 q^{68}-158 q^{67}-678 q^{66}-913 q^{65}-721 q^{64}+71 q^{63}+835 q^{62}+1201 q^{61}+723 q^{60}-71 q^{59}-939 q^{58}-1407 q^{57}-880 q^{56}+218 q^{55}+1277 q^{54}+1439 q^{53}+857 q^{52}-352 q^{51}-1549 q^{50}-1656 q^{49}-661 q^{48}+830 q^{47}+1689 q^{46}+1624 q^{45}+436 q^{44}-1268 q^{43}-2046 q^{42}-1399 q^{41}+235 q^{40}+1618 q^{39}+2080 q^{38}+1086 q^{37}-896 q^{36}-2183 q^{35}-1869 q^{34}-224 q^{33}+1498 q^{32}+2325 q^{31}+1486 q^{30}-664 q^{29}-2279 q^{28}-2147 q^{27}-458 q^{26}+1501 q^{25}+2527 q^{24}+1717 q^{23}-609 q^{22}-2457 q^{21}-2398 q^{20}-597 q^{19}+1597 q^{18}+2790 q^{17}+1993 q^{16}-515 q^{15}-2628 q^{14}-2743 q^{13}-924 q^{12}+1493 q^{11}+2977 q^{10}+2427 q^9-60 q^8-2420 q^7-2967 q^6-1506 q^5+861 q^4+2657 q^3+2681 q^2+708 q-1549-2566 q^{-1} -1857 q^{-2} -92 q^{-3} +1635 q^{-4} +2218 q^{-5} +1167 q^{-6} -419 q^{-7} -1484 q^{-8} -1472 q^{-9} -639 q^{-10} +491 q^{-11} +1173 q^{-12} +900 q^{-13} +203 q^{-14} -444 q^{-15} -662 q^{-16} -498 q^{-17} -58 q^{-18} +330 q^{-19} +341 q^{-20} +192 q^{-21} -14 q^{-22} -125 q^{-23} -164 q^{-24} -78 q^{-25} +36 q^{-26} +44 q^{-27} +45 q^{-28} +15 q^{-29} +7 q^{-30} -20 q^{-31} -13 q^{-32} +5 q^{-33} -7 q^{-34} + q^{-35} -2 q^{-36} +7 q^{-37} +3 q^{-40} -3 q^{-41} - q^{-42} -2 q^{-43} + q^{-44} + q^{-45} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+6 q^{55}-6 q^{54}-7 q^{53}-2 q^{52}-2 q^{51}+23 q^{50}+3 q^{49}-7 q^{48}-15 q^{47}-28 q^{46}+25 q^{45}+19 q^{44}+22 q^{43}-2 q^{42}-57 q^{41}-5 q^{40}+q^{39}+45 q^{38}+44 q^{37}-41 q^{36}-23 q^{35}-51 q^{34}+18 q^{33}+73 q^{32}+9 q^{31}+8 q^{30}-85 q^{29}-43 q^{28}+56 q^{27}+50 q^{26}+67 q^{25}-81 q^{24}-97 q^{23}+14 q^{22}+66 q^{21}+120 q^{20}-60 q^{19}-134 q^{18}-26 q^{17}+77 q^{16}+158 q^{15}-43 q^{14}-163 q^{13}-58 q^{12}+88 q^{11}+188 q^{10}-22 q^9-185 q^8-92 q^7+81 q^6+204 q^5+17 q^4-169 q^3-119 q^2+35 q+178+60 q^{-1} -101 q^{-2} -106 q^{-3} -19 q^{-4} +100 q^{-5} +61 q^{-6} -27 q^{-7} -51 q^{-8} -33 q^{-9} +30 q^{-10} +28 q^{-11} + q^{-12} -9 q^{-13} -15 q^{-14} +5 q^{-15} +5 q^{-16} + q^{-17} -4 q^{-19} + q^{-20} + q^{-21} </math> | |
|||
coloured_jones_5 = <math>q^{90}-2 q^{89}-q^{88}+2 q^{87}+q^{86}+2 q^{85}+2 q^{84}-4 q^{83}-9 q^{82}-2 q^{81}+3 q^{80}+8 q^{79}+15 q^{78}+8 q^{77}-11 q^{76}-24 q^{75}-20 q^{74}-8 q^{73}+21 q^{72}+42 q^{71}+33 q^{70}-2 q^{69}-41 q^{68}-60 q^{67}-40 q^{66}+16 q^{65}+70 q^{64}+82 q^{63}+34 q^{62}-44 q^{61}-100 q^{60}-94 q^{59}-20 q^{58}+82 q^{57}+135 q^{56}+94 q^{55}-15 q^{54}-128 q^{53}-168 q^{52}-80 q^{51}+78 q^{50}+198 q^{49}+180 q^{48}+20 q^{47}-181 q^{46}-262 q^{45}-139 q^{44}+120 q^{43}+306 q^{42}+252 q^{41}-19 q^{40}-310 q^{39}-356 q^{38}-88 q^{37}+280 q^{36}+428 q^{35}+201 q^{34}-230 q^{33}-479 q^{32}-298 q^{31}+175 q^{30}+506 q^{29}+382 q^{28}-122 q^{27}-530 q^{26}-444 q^{25}+78 q^{24}+548 q^{23}+500 q^{22}-50 q^{21}-573 q^{20}-546 q^{19}+29 q^{18}+600 q^{17}+594 q^{16}-6 q^{15}-626 q^{14}-648 q^{13}-22 q^{12}+638 q^{11}+690 q^{10}+84 q^9-616 q^8-740 q^7-152 q^6+560 q^5+734 q^4+242 q^3-445 q^2-706 q-311+320 q^{-1} +600 q^{-2} +344 q^{-3} -166 q^{-4} -472 q^{-5} -327 q^{-6} +54 q^{-7} +312 q^{-8} +270 q^{-9} +18 q^{-10} -180 q^{-11} -181 q^{-12} -46 q^{-13} +78 q^{-14} +110 q^{-15} +40 q^{-16} -34 q^{-17} -44 q^{-18} -22 q^{-19} +4 q^{-20} +20 q^{-21} +12 q^{-22} -8 q^{-23} -4 q^{-24} +2 q^{-27} +2 q^{-28} -4 q^{-29} + q^{-32} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{126}-2 q^{125}-q^{124}+2 q^{123}+q^{122}+2 q^{121}-2 q^{120}+4 q^{119}-6 q^{118}-9 q^{117}+q^{116}+2 q^{115}+10 q^{114}+3 q^{113}+21 q^{112}-3 q^{111}-19 q^{110}-19 q^{109}-23 q^{108}-6 q^{107}-7 q^{106}+60 q^{105}+43 q^{104}+27 q^{103}+q^{102}-42 q^{101}-68 q^{100}-109 q^{99}+35 q^{97}+101 q^{96}+122 q^{95}+98 q^{94}+5 q^{93}-165 q^{92}-148 q^{91}-172 q^{90}-50 q^{89}+86 q^{88}+250 q^{87}+276 q^{86}+94 q^{85}-16 q^{84}-262 q^{83}-338 q^{82}-307 q^{81}-16 q^{80}+273 q^{79}+384 q^{78}+453 q^{77}+165 q^{76}-186 q^{75}-573 q^{74}-562 q^{73}-294 q^{72}+95 q^{71}+628 q^{70}+768 q^{69}+534 q^{68}-158 q^{67}-678 q^{66}-913 q^{65}-721 q^{64}+71 q^{63}+835 q^{62}+1201 q^{61}+723 q^{60}-71 q^{59}-939 q^{58}-1407 q^{57}-880 q^{56}+218 q^{55}+1277 q^{54}+1439 q^{53}+857 q^{52}-352 q^{51}-1549 q^{50}-1656 q^{49}-661 q^{48}+830 q^{47}+1689 q^{46}+1624 q^{45}+436 q^{44}-1268 q^{43}-2046 q^{42}-1399 q^{41}+235 q^{40}+1618 q^{39}+2080 q^{38}+1086 q^{37}-896 q^{36}-2183 q^{35}-1869 q^{34}-224 q^{33}+1498 q^{32}+2325 q^{31}+1486 q^{30}-664 q^{29}-2279 q^{28}-2147 q^{27}-458 q^{26}+1501 q^{25}+2527 q^{24}+1717 q^{23}-609 q^{22}-2457 q^{21}-2398 q^{20}-597 q^{19}+1597 q^{18}+2790 q^{17}+1993 q^{16}-515 q^{15}-2628 q^{14}-2743 q^{13}-924 q^{12}+1493 q^{11}+2977 q^{10}+2427 q^9-60 q^8-2420 q^7-2967 q^6-1506 q^5+861 q^4+2657 q^3+2681 q^2+708 q-1549-2566 q^{-1} -1857 q^{-2} -92 q^{-3} +1635 q^{-4} +2218 q^{-5} +1167 q^{-6} -419 q^{-7} -1484 q^{-8} -1472 q^{-9} -639 q^{-10} +491 q^{-11} +1173 q^{-12} +900 q^{-13} +203 q^{-14} -444 q^{-15} -662 q^{-16} -498 q^{-17} -58 q^{-18} +330 q^{-19} +341 q^{-20} +192 q^{-21} -14 q^{-22} -125 q^{-23} -164 q^{-24} -78 q^{-25} +36 q^{-26} +44 q^{-27} +45 q^{-28} +15 q^{-29} +7 q^{-30} -20 q^{-31} -13 q^{-32} +5 q^{-33} -7 q^{-34} + q^{-35} -2 q^{-36} +7 q^{-37} +3 q^{-40} -3 q^{-41} - q^{-42} -2 q^{-43} + q^{-44} + q^{-45} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 155]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[3, 11, 4, 10], X[15, 3, 16, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 155]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[3, 11, 4, 10], X[15, 3, 16, 2], |
|||
X[5, 15, 6, 14], X[11, 5, 12, 4], X[9, 18, 10, 19], X[20, 14, 1, 13], |
X[5, 15, 6, 14], X[11, 5, 12, 4], X[9, 18, 10, 19], X[20, 14, 1, 13], |
||
X[17, 8, 18, 9], X[12, 20, 13, 19]]</nowiki></ |
X[17, 8, 18, 9], X[12, 20, 13, 19]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 155]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 155]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 6, -5, 1, -2, 9, -7, 3, -6, -10, 8, 5, -4, 2, -9, |
|||
7, 10, -8]</nowiki></ |
7, 10, -8]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 155]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 155]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 155]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 16, 18, 4, -20, 2, 8, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 155]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 2, -1, -1, 2, -1, -1, 2}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 155]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_155_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 155]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 155]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 155]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 155]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_155_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 155]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 155]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 5 2 3 |
|||
7 - t + -- - - - 5 t + 3 t - t |
7 - t + -- - - - 5 t + 3 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 155]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 155]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - 2 z - 3 z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 155]], KnotSignature[Knot[10, 155]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 155]], KnotSignature[Knot[10, 155]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{25, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 155]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 |
|||
4 + q - - - 4 q + 4 q - 4 q + 3 q - 2 q + q |
4 + q - - - 4 q + 4 q - 4 q + 3 q - 2 q + q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 155]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 137], Knot[10, 155], Knot[11, NonAlternating, 37]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 155]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 6 10 14 18 |
|||
1 + q + -- - 2 q - q + q + q |
1 + q + -- - 2 q - q + q + q |
||
2 |
2 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 155]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 155]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6 |
|||
2 4 2 3 z 8 z 4 z 5 z z |
2 4 2 3 z 8 z 4 z 5 z z |
||
3 + -- - -- + 3 z + ---- - ---- + z + -- - ---- - -- |
3 + -- - -- + 3 z + ---- - ---- + z + -- - ---- - -- |
||
4 2 4 2 4 2 2 |
4 2 4 2 4 2 2 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 155]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 155]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 3 |
|||
2 4 2 z 2 z 2 4 z z 11 z 2 2 8 z |
2 4 2 z 2 z 2 4 z z 11 z 2 2 8 z |
||
3 + -- + -- - --- - --- - 5 z + ---- - -- - ----- + a z + ---- + |
3 + -- + -- - --- - --- - 5 z + ---- - -- - ----- + a z + ---- + |
||
Line 165: | Line 207: | ||
---- - ---- + ---- + ---- + -- + -- + -- |
---- - ---- + ---- + ---- + -- + -- + -- |
||
4 2 5 3 a 4 2 |
4 2 5 3 a 4 2 |
||
a a a a a a</nowiki></ |
a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 155]], Vassiliev[3][Knot[10, 155]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 155]], Vassiliev[3][Knot[10, 155]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 155]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 155]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 1 1 3 3 2 5 2 |
|||
- + 2 q + ----- + ---- + --- + 2 q t + 2 q t + 2 q t + 2 q t + |
- + 2 q + ----- + ---- + --- + 2 q t + 2 q t + 2 q t + 2 q t + |
||
q 5 2 3 q t |
q 5 2 3 q t |
||
Line 177: | Line 227: | ||
5 3 7 3 7 4 9 4 9 5 11 5 13 6 |
5 3 7 3 7 4 9 4 9 5 11 5 13 6 |
||
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></ |
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 155], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 155], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -5 -4 5 7 2 3 4 5 |
|||
1 + q - q + q - -- + - - 11 q + 11 q + 3 q - 15 q + 9 q + |
1 + q - q + q - -- + - - 11 q + 11 q + 3 q - 15 q + 9 q + |
||
2 q |
2 q |
||
Line 189: | Line 243: | ||
15 16 17 18 |
15 16 17 18 |
||
6 q - q - 2 q + q</nowiki></ |
6 q - q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:05, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 155's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X7,16,8,17 X3,11,4,10 X15,3,16,2 X5,15,6,14 X11,5,12,4 X9,18,10,19 X20,14,1,13 X17,8,18,9 X12,20,13,19 |
Gauss code | -1, 4, -3, 6, -5, 1, -2, 9, -7, 3, -6, -10, 8, 5, -4, 2, -9, 7, 10, -8 |
Dowker-Thistlethwaite code | 6 10 14 16 18 4 -20 2 8 -12 |
Conway Notation | [-3:2:2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{11, 2}, {1, 9}, {10, 3}, {2, 4}, {3, 6}, {4, 8}, {9, 7}, {8, 5}, {7, 11}, {6, 1}, {5, 10}] |
[edit Notes on presentations of 10 155]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 155"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X7,16,8,17 X3,11,4,10 X15,3,16,2 X5,15,6,14 X11,5,12,4 X9,18,10,19 X20,14,1,13 X17,8,18,9 X12,20,13,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 6, -5, 1, -2, 9, -7, 3, -6, -10, 8, 5, -4, 2, -9, 7, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 16 18 4 -20 2 8 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-3:2:2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 2}, {1, 9}, {10, 3}, {2, 4}, {3, 6}, {4, 8}, {9, 7}, {8, 5}, {7, 11}, {6, 1}, {5, 10}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 155"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_9, K11n37,}
Same Jones Polynomial (up to mirroring, ): {10_137, K11n37,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 155"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_9, K11n37,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_137, K11n37,} |
Vassiliev invariants
V2 and V3: | (-2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 155. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|