9 39: Difference between revisions
No edit summary |
No edit summary |
||
| (5 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 9 | |
|||
<span id="top"></span> |
|||
k = 39 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,7,-6,1,-3,9,-5,2,-8,4,-9,6,-7,5,-4,3/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
|- valign=top |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|{{Rolfsen Knot Site Links|n=9|k=39|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,7,-6,1,-3,9,-5,2,-8,4,-9,6,-7,5,-4,3/goTop.html}} |
|||
</table> | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_crossings = 12 | |
|||
|} |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
<br style="clear:both" /> |
|||
same_alexander = [[K11n162]], | |
|||
same_jones = [[K11n11]], [[K11n112]], | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
khovanov_table = <table border=1> |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
| Line 47: | Line 40: | ||
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-3 q^{22}+q^{21}+10 q^{20}-16 q^{19}-5 q^{18}+37 q^{17}-30 q^{16}-27 q^{15}+69 q^{14}-32 q^{13}-55 q^{12}+89 q^{11}-23 q^{10}-72 q^9+88 q^8-9 q^7-68 q^6+62 q^5+4 q^4-45 q^3+28 q^2+7 q-17+7 q^{-1} +2 q^{-2} -3 q^{-3} + q^{-4} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+3 q^{44}-q^{43}-5 q^{42}-2 q^{41}+16 q^{40}+8 q^{39}-33 q^{38}-26 q^{37}+51 q^{36}+62 q^{35}-59 q^{34}-120 q^{33}+58 q^{32}+179 q^{31}-25 q^{30}-245 q^{29}-25 q^{28}+298 q^{27}+91 q^{26}-336 q^{25}-162 q^{24}+356 q^{23}+229 q^{22}-357 q^{21}-293 q^{20}+353 q^{19}+331 q^{18}-321 q^{17}-370 q^{16}+291 q^{15}+372 q^{14}-227 q^{13}-373 q^{12}+172 q^{11}+336 q^{10}-100 q^9-288 q^8+44 q^7+220 q^6+2 q^5-156 q^4-18 q^3+91 q^2+25 q-49-17 q^{-1} +23 q^{-2} +8 q^{-3} -10 q^{-4} -2 q^{-5} +3 q^{-6} +2 q^{-7} -3 q^{-8} + q^{-9} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{74}-3 q^{73}+q^{72}+5 q^{71}-3 q^{70}+2 q^{69}-19 q^{68}+4 q^{67}+35 q^{66}+5 q^{65}+6 q^{64}-100 q^{63}-38 q^{62}+108 q^{61}+105 q^{60}+116 q^{59}-260 q^{58}-268 q^{57}+55 q^{56}+286 q^{55}+546 q^{54}-254 q^{53}-651 q^{52}-380 q^{51}+228 q^{50}+1217 q^{49}+209 q^{48}-799 q^{47}-1105 q^{46}-348 q^{45}+1710 q^{44}+1002 q^{43}-452 q^{42}-1713 q^{41}-1256 q^{40}+1765 q^{39}+1727 q^{38}+220 q^{37}-1981 q^{36}-2105 q^{35}+1508 q^{34}+2169 q^{33}+889 q^{32}-1969 q^{31}-2683 q^{30}+1123 q^{29}+2332 q^{28}+1419 q^{27}-1747 q^{26}-2957 q^{25}+634 q^{24}+2205 q^{23}+1798 q^{22}-1260 q^{21}-2863 q^{20}+26 q^{19}+1701 q^{18}+1925 q^{17}-533 q^{16}-2296 q^{15}-489 q^{14}+881 q^{13}+1614 q^{12}+137 q^{11}-1364 q^{10}-612 q^9+132 q^8+950 q^7+384 q^6-521 q^5-358 q^4-174 q^3+345 q^2+250 q-109-89 q^{-1} -128 q^{-2} +72 q^{-3} +77 q^{-4} -20 q^{-5} +3 q^{-6} -38 q^{-7} +12 q^{-8} +14 q^{-9} -9 q^{-10} +5 q^{-11} -6 q^{-12} +3 q^{-13} +2 q^{-14} -3 q^{-15} + q^{-16} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+3 q^{109}-q^{108}-5 q^{107}+3 q^{106}+3 q^{105}+q^{104}+7 q^{103}-6 q^{102}-30 q^{101}-8 q^{100}+29 q^{99}+47 q^{98}+52 q^{97}-20 q^{96}-132 q^{95}-159 q^{94}-11 q^{93}+211 q^{92}+349 q^{91}+212 q^{90}-236 q^{89}-649 q^{88}-610 q^{87}+50 q^{86}+918 q^{85}+1245 q^{84}+513 q^{83}-945 q^{82}-2007 q^{81}-1554 q^{80}+511 q^{79}+2637 q^{78}+2919 q^{77}+657 q^{76}-2779 q^{75}-4485 q^{74}-2468 q^{73}+2201 q^{72}+5738 q^{71}+4783 q^{70}-680 q^{69}-6469 q^{68}-7254 q^{67}-1549 q^{66}+6351 q^{65}+9482 q^{64}+4321 q^{63}-5428 q^{62}-11228 q^{61}-7211 q^{60}+3854 q^{59}+12318 q^{58}+9944 q^{57}-1903 q^{56}-12793 q^{55}-12309 q^{54}-134 q^{53}+12791 q^{52}+14176 q^{51}+2110 q^{50}-12498 q^{49}-15624 q^{48}-3802 q^{47}+11986 q^{46}+16645 q^{45}+5371 q^{44}-11403 q^{43}-17433 q^{42}-6638 q^{41}+10627 q^{40}+17843 q^{39}+7990 q^{38}-9684 q^{37}-18085 q^{36}-9117 q^{35}+8360 q^{34}+17780 q^{33}+10381 q^{32}-6663 q^{31}-17086 q^{30}-11311 q^{29}+4551 q^{28}+15589 q^{27}+12021 q^{26}-2183 q^{25}-13495 q^{24}-12040 q^{23}-208 q^{22}+10743 q^{21}+11390 q^{20}+2243 q^{19}-7720 q^{18}-9909 q^{17}-3653 q^{16}+4709 q^{15}+7949 q^{14}+4195 q^{13}-2223 q^{12}-5645 q^{11}-3988 q^{10}+414 q^9+3563 q^8+3232 q^7+517 q^6-1862 q^5-2242 q^4-849 q^3+768 q^2+1346 q+749-192 q^{-1} -679 q^{-2} -506 q^{-3} -28 q^{-4} +280 q^{-5} +281 q^{-6} +78 q^{-7} -109 q^{-8} -129 q^{-9} -39 q^{-10} +25 q^{-11} +41 q^{-12} +35 q^{-13} -11 q^{-14} -25 q^{-15} +2 q^{-16} +3 q^{-17} -3 q^{-18} +6 q^{-19} + q^{-20} -6 q^{-21} +3 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} </math> | |
|||
<table> |
|||
coloured_jones_6 = | |
|||
<tr valign=top> |
|||
coloured_jones_7 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 39]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 11, 4, 10], X[7, 18, 8, 1], X[17, 13, 18, 12], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 39]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[3, 11, 4, 10], X[7, 18, 8, 1], X[17, 13, 18, 12], |
|||
X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2], |
X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2], |
||
X[13, 9, 14, 8]]</nowiki></ |
X[13, 9, 14, 8]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 39]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 39]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 39]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 39]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 18, 16, 2, 8, 4, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 39]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, 1, 2, -1, -3, -2, 1, 4, 3, -2, 3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 39]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 39]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_39_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 39]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 39]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 14 2 |
|||
-21 - -- + -- + 14 t - 3 t |
-21 - -- + -- + 14 t - 3 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 39]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 2 z - 3 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 39]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 162]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 2 z - 3 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 39]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 162]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 39]], KnotSignature[Knot[9, 39]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{55, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 39]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 1 2 3 4 5 6 7 8 |
|||
-3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q |
-3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 11], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 39], Knot[11, NonAlternating, 11], |
|||
Knot[11, NonAlternating, 112]}</nowiki></ |
Knot[11, NonAlternating, 112]}</nowiki></code></td></tr> |
||
</table> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 39]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 39]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 -2 2 4 6 8 10 12 14 16 |
|||
-1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q - |
-1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q - |
||
20 22 24 26 |
20 22 24 26 |
||
q + 2 q - q - q</nowiki></ |
q + 2 q - q - q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 39]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 39]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 |
|||
-8 2 2 2 2 3 z 3 z z 2 z z |
|||
-a + -- - -- + -- + z + ---- - ---- + -- - ---- - -- |
|||
6 4 2 6 4 2 4 2 |
|||
a a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 39]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 |
|||
-8 2 2 2 z z 3 z z 2 3 z 9 z 12 z |
-8 2 2 2 z z 3 z z 2 3 z 9 z 12 z |
||
-a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- + |
-a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- + |
||
| Line 119: | Line 217: | ||
---- + ---- + ---- + ---- + ---- + ---- |
---- + ---- + ---- + ---- + ---- + ---- |
||
2 7 5 3 6 4 |
2 7 5 3 6 4 |
||
a a a a a a</nowiki></ |
a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 39]], Vassiliev[3][Knot[9, 39]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 4}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 39]], Vassiliev[3][Knot[9, 39]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 39]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 q 3 5 5 2 7 2 |
|||
4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t + |
4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t + |
||
3 2 q t t |
3 2 q t t |
||
| Line 132: | Line 240: | ||
13 6 15 6 17 7 |
13 6 15 6 17 7 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 39], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 2 7 2 3 4 5 6 |
|||
-17 + q - -- + -- + - + 7 q + 28 q - 45 q + 4 q + 62 q - 68 q - |
|||
3 2 q |
|||
q q |
|||
7 8 9 10 11 12 13 14 |
|||
9 q + 88 q - 72 q - 23 q + 89 q - 55 q - 32 q + 69 q - |
|||
15 16 17 18 19 20 21 22 23 |
|||
27 q - 30 q + 37 q - 5 q - 16 q + 10 q + q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
|||
Latest revision as of 17:05, 1 September 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
| Gauss code | -1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3 |
| Dowker-Thistlethwaite code | 6 10 14 18 16 2 8 4 12 |
| Conway Notation | [2:2:20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{11, 6}, {2, 7}, {6, 1}, {8, 3}, {5, 2}, {7, 9}, {4, 8}, {10, 5}, {9, 11}, {3, 10}, {1, 4}] |
[edit Notes on presentations of 9 39]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 16 2 8 4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
[math]\displaystyle{ \textrm{BR}(5,\{1,1,2,-1,-3,-2,1,4,3,-2,3,4\}) }[/math] |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 6}, {2, 7}, {6, 1}, {8, 3}, {5, 2}, {7, 9}, {4, 8}, {10, 5}, {9, 11}, {3, 10}, {1, 4}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -3 t^2+14 t-21+14 t^{-1} -3 t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ -3 z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 55, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+3 q^7-6 q^6+8 q^5-9 q^4+10 q^3-8 q^2+6 q-3+ q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^4 a^{-2} -2 z^4 a^{-4} +z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +z^2+2 a^{-2} -2 a^{-4} +2 a^{-6} - a^{-8} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^8 a^{-4} +2 z^8 a^{-6} +5 z^7 a^{-3} +9 z^7 a^{-5} +4 z^7 a^{-7} +5 z^6 a^{-2} +5 z^6 a^{-4} +3 z^6 a^{-6} +3 z^6 a^{-8} +3 z^5 a^{-1} -7 z^5 a^{-3} -18 z^5 a^{-5} -7 z^5 a^{-7} +z^5 a^{-9} -7 z^4 a^{-2} -15 z^4 a^{-4} -13 z^4 a^{-6} -6 z^4 a^{-8} +z^4-3 z^3 a^{-1} +5 z^3 a^{-3} +12 z^3 a^{-5} +2 z^3 a^{-7} -2 z^3 a^{-9} +5 z^2 a^{-2} +12 z^2 a^{-4} +9 z^2 a^{-6} +3 z^2 a^{-8} -z^2-z a^{-3} -3 z a^{-5} -z a^{-7} +z a^{-9} -2 a^{-2} -2 a^{-4} -2 a^{-6} - a^{-8} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^4-q^2-1+3 q^{-2} - q^{-4} +2 q^{-6} + q^{-8} - q^{-10} + q^{-12} -2 q^{-14} +2 q^{-16} - q^{-20} +2 q^{-22} - q^{-24} - q^{-26} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+5 q^{10}-3 q^8-2 q^6+12 q^4-19 q^2+28-30 q^{-2} +21 q^{-4} -3 q^{-6} -27 q^{-8} +58 q^{-10} -76 q^{-12} +73 q^{-14} -45 q^{-16} -6 q^{-18} +63 q^{-20} -97 q^{-22} +101 q^{-24} -61 q^{-26} +2 q^{-28} +53 q^{-30} -80 q^{-32} +65 q^{-34} -12 q^{-36} -45 q^{-38} +87 q^{-40} -83 q^{-42} +36 q^{-44} +37 q^{-46} -103 q^{-48} +134 q^{-50} -123 q^{-52} +66 q^{-54} +10 q^{-56} -84 q^{-58} +131 q^{-60} -134 q^{-62} +95 q^{-64} -29 q^{-66} -43 q^{-68} +87 q^{-70} -93 q^{-72} +59 q^{-74} -52 q^{-78} +80 q^{-80} -61 q^{-82} +8 q^{-84} +57 q^{-86} -100 q^{-88} +103 q^{-90} -65 q^{-92} - q^{-94} +60 q^{-96} -93 q^{-98} +95 q^{-100} -63 q^{-102} +19 q^{-104} +19 q^{-106} -45 q^{-108} +45 q^{-110} -33 q^{-112} +17 q^{-114} -3 q^{-116} -6 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^3-2 q+3 q^{-1} -2 q^{-3} +2 q^{-5} + q^{-7} - q^{-9} +2 q^{-11} -3 q^{-13} +2 q^{-15} - q^{-17} }[/math] |
| 2 | [math]\displaystyle{ q^{10}-2 q^8+6 q^4-8 q^2-3+18 q^{-2} -10 q^{-4} -13 q^{-6} +21 q^{-8} -2 q^{-10} -15 q^{-12} +11 q^{-14} +7 q^{-16} -7 q^{-18} -6 q^{-20} +11 q^{-22} +2 q^{-24} -18 q^{-26} +10 q^{-28} +12 q^{-30} -20 q^{-32} +2 q^{-34} +16 q^{-36} -11 q^{-38} -5 q^{-40} +8 q^{-42} - q^{-44} -2 q^{-46} + q^{-48} }[/math] |
| 3 | [math]\displaystyle{ q^{21}-2 q^{19}+3 q^{15}-7 q^{11}-q^9+19 q^7+4 q^5-35 q^3-18 q+50 q^{-1} +49 q^{-3} -58 q^{-5} -81 q^{-7} +48 q^{-9} +110 q^{-11} -22 q^{-13} -124 q^{-15} -8 q^{-17} +120 q^{-19} +35 q^{-21} -92 q^{-23} -56 q^{-25} +63 q^{-27} +66 q^{-29} -28 q^{-31} -69 q^{-33} -7 q^{-35} +70 q^{-37} +34 q^{-39} -68 q^{-41} -65 q^{-43} +66 q^{-45} +87 q^{-47} -51 q^{-49} -109 q^{-51} +28 q^{-53} +119 q^{-55} +3 q^{-57} -116 q^{-59} -33 q^{-61} +92 q^{-63} +58 q^{-65} -59 q^{-67} -66 q^{-69} +28 q^{-71} +54 q^{-73} -35 q^{-77} -11 q^{-79} +17 q^{-81} +8 q^{-83} -5 q^{-85} -4 q^{-87} + q^{-89} +2 q^{-91} - q^{-93} }[/math] |
| 4 | [math]\displaystyle{ q^{36}-2 q^{34}+3 q^{30}-3 q^{28}+q^{26}-5 q^{24}+7 q^{22}+16 q^{20}-16 q^{18}-18 q^{16}-29 q^{14}+34 q^{12}+94 q^{10}+4 q^8-88 q^6-177 q^4-4 q^2+269+223 q^{-2} -46 q^{-4} -458 q^{-6} -324 q^{-8} +281 q^{-10} +587 q^{-12} +333 q^{-14} -510 q^{-16} -757 q^{-18} -93 q^{-20} +656 q^{-22} +779 q^{-24} -153 q^{-26} -823 q^{-28} -512 q^{-30} +308 q^{-32} +823 q^{-34} +256 q^{-36} -471 q^{-38} -598 q^{-40} -94 q^{-42} +514 q^{-44} +420 q^{-46} -67 q^{-48} -446 q^{-50} -319 q^{-52} +170 q^{-54} +444 q^{-56} +222 q^{-58} -308 q^{-60} -471 q^{-62} -86 q^{-64} +492 q^{-66} +480 q^{-68} -189 q^{-70} -631 q^{-72} -374 q^{-74} +475 q^{-76} +743 q^{-78} +71 q^{-80} -654 q^{-82} -709 q^{-84} +199 q^{-86} +807 q^{-88} +460 q^{-90} -333 q^{-92} -826 q^{-94} -250 q^{-96} +475 q^{-98} +623 q^{-100} +160 q^{-102} -511 q^{-104} -453 q^{-106} -18 q^{-108} +365 q^{-110} +359 q^{-112} -71 q^{-114} -252 q^{-116} -199 q^{-118} +31 q^{-120} +191 q^{-122} +81 q^{-124} -19 q^{-126} -92 q^{-128} -50 q^{-130} +31 q^{-132} +27 q^{-134} +19 q^{-136} -11 q^{-138} -14 q^{-140} +2 q^{-142} + q^{-144} +4 q^{-146} - q^{-148} -2 q^{-150} + q^{-152} }[/math] |
| 5 | [math]\displaystyle{ q^{55}-2 q^{53}+3 q^{49}-3 q^{47}-2 q^{45}+3 q^{43}+3 q^{41}+4 q^{39}+3 q^{37}-16 q^{35}-28 q^{33}+q^{31}+45 q^{29}+67 q^{27}+26 q^{25}-78 q^{23}-176 q^{21}-133 q^{19}+107 q^{17}+362 q^{15}+373 q^{13}-4 q^{11}-574 q^9-844 q^7-376 q^5+690 q^3+1486 q+1143 q^{-1} -420 q^{-3} -2090 q^{-5} -2322 q^{-7} -436 q^{-9} +2359 q^{-11} +3622 q^{-13} +1876 q^{-15} -1907 q^{-17} -4647 q^{-19} -3684 q^{-21} +702 q^{-23} +4997 q^{-25} +5332 q^{-27} +1068 q^{-29} -4429 q^{-31} -6381 q^{-33} -2940 q^{-35} +3094 q^{-37} +6539 q^{-39} +4408 q^{-41} -1367 q^{-43} -5793 q^{-45} -5162 q^{-47} -316 q^{-49} +4443 q^{-51} +5172 q^{-53} +1581 q^{-55} -2899 q^{-57} -4539 q^{-59} -2348 q^{-61} +1461 q^{-63} +3655 q^{-65} +2656 q^{-67} -365 q^{-69} -2756 q^{-71} -2693 q^{-73} -426 q^{-75} +2053 q^{-77} +2705 q^{-79} +986 q^{-81} -1633 q^{-83} -2831 q^{-85} -1472 q^{-87} +1364 q^{-89} +3173 q^{-91} +2078 q^{-93} -1183 q^{-95} -3652 q^{-97} -2847 q^{-99} +821 q^{-101} +4136 q^{-103} +3841 q^{-105} -172 q^{-107} -4404 q^{-109} -4877 q^{-111} -889 q^{-113} +4209 q^{-115} +5774 q^{-117} +2249 q^{-119} -3374 q^{-121} -6210 q^{-123} -3713 q^{-125} +1949 q^{-127} +5923 q^{-129} +4882 q^{-131} -119 q^{-133} -4818 q^{-135} -5431 q^{-137} -1681 q^{-139} +3105 q^{-141} +5089 q^{-143} +2990 q^{-145} -1136 q^{-147} -3955 q^{-149} -3519 q^{-151} -540 q^{-153} +2391 q^{-155} +3163 q^{-157} +1561 q^{-159} -845 q^{-161} -2237 q^{-163} -1830 q^{-165} -226 q^{-167} +1171 q^{-169} +1467 q^{-171} +718 q^{-173} -315 q^{-175} -884 q^{-177} -723 q^{-179} -124 q^{-181} +366 q^{-183} +470 q^{-185} +238 q^{-187} -59 q^{-189} -223 q^{-191} -183 q^{-193} -32 q^{-195} +70 q^{-197} +84 q^{-199} +39 q^{-201} -7 q^{-203} -33 q^{-205} -22 q^{-207} +3 q^{-209} +8 q^{-211} +4 q^{-213} +2 q^{-215} - q^{-217} -4 q^{-219} + q^{-221} +2 q^{-223} - q^{-225} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^4-q^2-1+3 q^{-2} - q^{-4} +2 q^{-6} + q^{-8} - q^{-10} + q^{-12} -2 q^{-14} +2 q^{-16} - q^{-20} +2 q^{-22} - q^{-24} - q^{-26} }[/math] |
| 1,1 | [math]\displaystyle{ q^{12}-4 q^{10}+10 q^8-20 q^6+38 q^4-62 q^2+98-150 q^{-2} +211 q^{-4} -270 q^{-6} +334 q^{-8} -374 q^{-10} +372 q^{-12} -316 q^{-14} +212 q^{-16} -54 q^{-18} -136 q^{-20} +344 q^{-22} -522 q^{-24} +662 q^{-26} -745 q^{-28} +754 q^{-30} -702 q^{-32} +582 q^{-34} -415 q^{-36} +218 q^{-38} -18 q^{-40} -158 q^{-42} +298 q^{-44} -386 q^{-46} +410 q^{-48} -380 q^{-50} +319 q^{-52} -248 q^{-54} +168 q^{-56} -102 q^{-58} +58 q^{-60} -28 q^{-62} +12 q^{-64} -4 q^{-66} + q^{-68} }[/math] |
| 2,0 | [math]\displaystyle{ q^{12}-q^{10}-2 q^8+2 q^6+5 q^4-q^2-10+14 q^{-4} -11 q^{-8} +3 q^{-10} +11 q^{-12} - q^{-14} -10 q^{-16} +3 q^{-18} +6 q^{-20} -3 q^{-22} +2 q^{-24} +3 q^{-26} -2 q^{-28} +8 q^{-32} -5 q^{-34} -10 q^{-36} +2 q^{-38} +9 q^{-40} -4 q^{-42} -12 q^{-44} +6 q^{-46} +9 q^{-48} -2 q^{-50} -8 q^{-52} +6 q^{-56} -3 q^{-60} - q^{-62} + q^{-64} + q^{-66} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^8-2 q^6+5 q^2-6- q^{-2} +13 q^{-4} -10 q^{-6} -3 q^{-8} +17 q^{-10} -10 q^{-12} -4 q^{-14} +12 q^{-16} -4 q^{-18} -3 q^{-20} +2 q^{-22} +5 q^{-24} -2 q^{-26} -8 q^{-28} +8 q^{-30} +4 q^{-32} -15 q^{-34} +9 q^{-36} +7 q^{-38} -15 q^{-40} +7 q^{-42} +3 q^{-44} -8 q^{-46} +4 q^{-48} + q^{-50} -2 q^{-52} + q^{-54} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^5-q^3- q^{-1} +3 q^{-3} - q^{-5} +3 q^{-7} + q^{-9} + q^{-11} - q^{-13} - q^{-15} -2 q^{-19} +2 q^{-21} +2 q^{-25} - q^{-27} +2 q^{-29} - q^{-31} - q^{-33} - q^{-35} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^8-2 q^6+4 q^4-7 q^2+10-13 q^{-2} +17 q^{-4} -16 q^{-6} +15 q^{-8} -9 q^{-10} +4 q^{-12} +4 q^{-14} -12 q^{-16} +20 q^{-18} -27 q^{-20} +30 q^{-22} -31 q^{-24} +28 q^{-26} -22 q^{-28} +16 q^{-30} -6 q^{-32} - q^{-34} +9 q^{-36} -13 q^{-38} +15 q^{-40} -17 q^{-42} +15 q^{-44} -12 q^{-46} +8 q^{-48} -5 q^{-50} +2 q^{-52} - q^{-54} }[/math] |
| 1,0 | [math]\displaystyle{ q^{14}-2 q^{10}-2 q^8+2 q^6+6 q^4+q^2-8-7 q^{-2} +6 q^{-4} +15 q^{-6} + q^{-8} -16 q^{-10} -9 q^{-12} +13 q^{-14} +15 q^{-16} -5 q^{-18} -16 q^{-20} +15 q^{-24} +5 q^{-26} -12 q^{-28} -6 q^{-30} +10 q^{-32} +9 q^{-34} -6 q^{-36} -10 q^{-38} +4 q^{-40} +11 q^{-42} -2 q^{-44} -12 q^{-46} -2 q^{-48} +13 q^{-50} +6 q^{-52} -13 q^{-54} -14 q^{-56} +9 q^{-58} +18 q^{-60} - q^{-62} -17 q^{-64} -8 q^{-66} +12 q^{-68} +11 q^{-70} -5 q^{-72} -10 q^{-74} - q^{-76} +6 q^{-78} +3 q^{-80} -2 q^{-82} -2 q^{-84} + q^{-88} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+5 q^{10}-3 q^8-2 q^6+12 q^4-19 q^2+28-30 q^{-2} +21 q^{-4} -3 q^{-6} -27 q^{-8} +58 q^{-10} -76 q^{-12} +73 q^{-14} -45 q^{-16} -6 q^{-18} +63 q^{-20} -97 q^{-22} +101 q^{-24} -61 q^{-26} +2 q^{-28} +53 q^{-30} -80 q^{-32} +65 q^{-34} -12 q^{-36} -45 q^{-38} +87 q^{-40} -83 q^{-42} +36 q^{-44} +37 q^{-46} -103 q^{-48} +134 q^{-50} -123 q^{-52} +66 q^{-54} +10 q^{-56} -84 q^{-58} +131 q^{-60} -134 q^{-62} +95 q^{-64} -29 q^{-66} -43 q^{-68} +87 q^{-70} -93 q^{-72} +59 q^{-74} -52 q^{-78} +80 q^{-80} -61 q^{-82} +8 q^{-84} +57 q^{-86} -100 q^{-88} +103 q^{-90} -65 q^{-92} - q^{-94} +60 q^{-96} -93 q^{-98} +95 q^{-100} -63 q^{-102} +19 q^{-104} +19 q^{-106} -45 q^{-108} +45 q^{-110} -33 q^{-112} +17 q^{-114} -3 q^{-116} -6 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -3 t^2+14 t-21+14 t^{-1} -3 t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -3 z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 55, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+3 q^7-6 q^6+8 q^5-9 q^4+10 q^3-8 q^2+6 q-3+ q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^4 a^{-2} -2 z^4 a^{-4} +z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +z^2+2 a^{-2} -2 a^{-4} +2 a^{-6} - a^{-8} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^8 a^{-4} +2 z^8 a^{-6} +5 z^7 a^{-3} +9 z^7 a^{-5} +4 z^7 a^{-7} +5 z^6 a^{-2} +5 z^6 a^{-4} +3 z^6 a^{-6} +3 z^6 a^{-8} +3 z^5 a^{-1} -7 z^5 a^{-3} -18 z^5 a^{-5} -7 z^5 a^{-7} +z^5 a^{-9} -7 z^4 a^{-2} -15 z^4 a^{-4} -13 z^4 a^{-6} -6 z^4 a^{-8} +z^4-3 z^3 a^{-1} +5 z^3 a^{-3} +12 z^3 a^{-5} +2 z^3 a^{-7} -2 z^3 a^{-9} +5 z^2 a^{-2} +12 z^2 a^{-4} +9 z^2 a^{-6} +3 z^2 a^{-8} -z^2-z a^{-3} -3 z a^{-5} -z a^{-7} +z a^{-9} -2 a^{-2} -2 a^{-4} -2 a^{-6} - a^{-8} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n162,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n11, K11n112,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -3 t^2+14 t-21+14 t^{-1} -3 t^{-2} }[/math], [math]\displaystyle{ -q^8+3 q^7-6 q^6+8 q^5-9 q^4+10 q^3-8 q^2+6 q-3+ q^{-1} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n162,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n11, K11n112,} |
Vassiliev invariants
| V2 and V3: | (2, 4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 9 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| [math]\displaystyle{ n }[/math] | [math]\displaystyle{ J_n }[/math] |
| 2 | [math]\displaystyle{ q^{23}-3 q^{22}+q^{21}+10 q^{20}-16 q^{19}-5 q^{18}+37 q^{17}-30 q^{16}-27 q^{15}+69 q^{14}-32 q^{13}-55 q^{12}+89 q^{11}-23 q^{10}-72 q^9+88 q^8-9 q^7-68 q^6+62 q^5+4 q^4-45 q^3+28 q^2+7 q-17+7 q^{-1} +2 q^{-2} -3 q^{-3} + q^{-4} }[/math] |
| 3 | [math]\displaystyle{ -q^{45}+3 q^{44}-q^{43}-5 q^{42}-2 q^{41}+16 q^{40}+8 q^{39}-33 q^{38}-26 q^{37}+51 q^{36}+62 q^{35}-59 q^{34}-120 q^{33}+58 q^{32}+179 q^{31}-25 q^{30}-245 q^{29}-25 q^{28}+298 q^{27}+91 q^{26}-336 q^{25}-162 q^{24}+356 q^{23}+229 q^{22}-357 q^{21}-293 q^{20}+353 q^{19}+331 q^{18}-321 q^{17}-370 q^{16}+291 q^{15}+372 q^{14}-227 q^{13}-373 q^{12}+172 q^{11}+336 q^{10}-100 q^9-288 q^8+44 q^7+220 q^6+2 q^5-156 q^4-18 q^3+91 q^2+25 q-49-17 q^{-1} +23 q^{-2} +8 q^{-3} -10 q^{-4} -2 q^{-5} +3 q^{-6} +2 q^{-7} -3 q^{-8} + q^{-9} }[/math] |
| 4 | [math]\displaystyle{ q^{74}-3 q^{73}+q^{72}+5 q^{71}-3 q^{70}+2 q^{69}-19 q^{68}+4 q^{67}+35 q^{66}+5 q^{65}+6 q^{64}-100 q^{63}-38 q^{62}+108 q^{61}+105 q^{60}+116 q^{59}-260 q^{58}-268 q^{57}+55 q^{56}+286 q^{55}+546 q^{54}-254 q^{53}-651 q^{52}-380 q^{51}+228 q^{50}+1217 q^{49}+209 q^{48}-799 q^{47}-1105 q^{46}-348 q^{45}+1710 q^{44}+1002 q^{43}-452 q^{42}-1713 q^{41}-1256 q^{40}+1765 q^{39}+1727 q^{38}+220 q^{37}-1981 q^{36}-2105 q^{35}+1508 q^{34}+2169 q^{33}+889 q^{32}-1969 q^{31}-2683 q^{30}+1123 q^{29}+2332 q^{28}+1419 q^{27}-1747 q^{26}-2957 q^{25}+634 q^{24}+2205 q^{23}+1798 q^{22}-1260 q^{21}-2863 q^{20}+26 q^{19}+1701 q^{18}+1925 q^{17}-533 q^{16}-2296 q^{15}-489 q^{14}+881 q^{13}+1614 q^{12}+137 q^{11}-1364 q^{10}-612 q^9+132 q^8+950 q^7+384 q^6-521 q^5-358 q^4-174 q^3+345 q^2+250 q-109-89 q^{-1} -128 q^{-2} +72 q^{-3} +77 q^{-4} -20 q^{-5} +3 q^{-6} -38 q^{-7} +12 q^{-8} +14 q^{-9} -9 q^{-10} +5 q^{-11} -6 q^{-12} +3 q^{-13} +2 q^{-14} -3 q^{-15} + q^{-16} }[/math] |
| 5 | [math]\displaystyle{ -q^{110}+3 q^{109}-q^{108}-5 q^{107}+3 q^{106}+3 q^{105}+q^{104}+7 q^{103}-6 q^{102}-30 q^{101}-8 q^{100}+29 q^{99}+47 q^{98}+52 q^{97}-20 q^{96}-132 q^{95}-159 q^{94}-11 q^{93}+211 q^{92}+349 q^{91}+212 q^{90}-236 q^{89}-649 q^{88}-610 q^{87}+50 q^{86}+918 q^{85}+1245 q^{84}+513 q^{83}-945 q^{82}-2007 q^{81}-1554 q^{80}+511 q^{79}+2637 q^{78}+2919 q^{77}+657 q^{76}-2779 q^{75}-4485 q^{74}-2468 q^{73}+2201 q^{72}+5738 q^{71}+4783 q^{70}-680 q^{69}-6469 q^{68}-7254 q^{67}-1549 q^{66}+6351 q^{65}+9482 q^{64}+4321 q^{63}-5428 q^{62}-11228 q^{61}-7211 q^{60}+3854 q^{59}+12318 q^{58}+9944 q^{57}-1903 q^{56}-12793 q^{55}-12309 q^{54}-134 q^{53}+12791 q^{52}+14176 q^{51}+2110 q^{50}-12498 q^{49}-15624 q^{48}-3802 q^{47}+11986 q^{46}+16645 q^{45}+5371 q^{44}-11403 q^{43}-17433 q^{42}-6638 q^{41}+10627 q^{40}+17843 q^{39}+7990 q^{38}-9684 q^{37}-18085 q^{36}-9117 q^{35}+8360 q^{34}+17780 q^{33}+10381 q^{32}-6663 q^{31}-17086 q^{30}-11311 q^{29}+4551 q^{28}+15589 q^{27}+12021 q^{26}-2183 q^{25}-13495 q^{24}-12040 q^{23}-208 q^{22}+10743 q^{21}+11390 q^{20}+2243 q^{19}-7720 q^{18}-9909 q^{17}-3653 q^{16}+4709 q^{15}+7949 q^{14}+4195 q^{13}-2223 q^{12}-5645 q^{11}-3988 q^{10}+414 q^9+3563 q^8+3232 q^7+517 q^6-1862 q^5-2242 q^4-849 q^3+768 q^2+1346 q+749-192 q^{-1} -679 q^{-2} -506 q^{-3} -28 q^{-4} +280 q^{-5} +281 q^{-6} +78 q^{-7} -109 q^{-8} -129 q^{-9} -39 q^{-10} +25 q^{-11} +41 q^{-12} +35 q^{-13} -11 q^{-14} -25 q^{-15} +2 q^{-16} +3 q^{-17} -3 q^{-18} +6 q^{-19} + q^{-20} -6 q^{-21} +3 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} }[/math] |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




