8 3: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 8 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 3 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,4,-5,3,-1,7,-8,2,-3,5,-4,6,-2,8,-7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=8|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,4,-5,3,-1,7,-8,2,-3,5,-4,6,-2,8,-7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 26: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[10_1]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_1]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 71: | Line 39: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-q^{11}+2 q^9-3 q^8-q^7+5 q^6-4 q^5-3 q^4+9 q^3-5 q^2-5 q+11-5 q^{-1} -5 q^{-2} +9 q^{-3} -3 q^{-4} -4 q^{-5} +5 q^{-6} - q^{-7} -3 q^{-8} +2 q^{-9} - q^{-11} + q^{-12} </math> | |
|||
coloured_jones_3 = <math>q^{24}-q^{23}+q^{20}-2 q^{19}+q^{17}+2 q^{16}-4 q^{15}-q^{14}+3 q^{13}+5 q^{12}-4 q^{11}-6 q^{10}+3 q^9+9 q^8-2 q^7-12 q^6+2 q^5+13 q^4-15 q^2+15-15 q^{-2} +13 q^{-4} +2 q^{-5} -12 q^{-6} -2 q^{-7} +9 q^{-8} +3 q^{-9} -6 q^{-10} -4 q^{-11} +5 q^{-12} +3 q^{-13} - q^{-14} -4 q^{-15} +2 q^{-16} + q^{-17} -2 q^{-19} + q^{-20} - q^{-23} + q^{-24} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-q^{11}+2 q^9-3 q^8-q^7+5 q^6-4 q^5-3 q^4+9 q^3-5 q^2-5 q+11-5 q^{-1} -5 q^{-2} +9 q^{-3} -3 q^{-4} -4 q^{-5} +5 q^{-6} - q^{-7} -3 q^{-8} +2 q^{-9} - q^{-11} + q^{-12} </math>|J3=<math>q^{24}-q^{23}+q^{20}-2 q^{19}+q^{17}+2 q^{16}-4 q^{15}-q^{14}+3 q^{13}+5 q^{12}-4 q^{11}-6 q^{10}+3 q^9+9 q^8-2 q^7-12 q^6+2 q^5+13 q^4-15 q^2+15-15 q^{-2} +13 q^{-4} +2 q^{-5} -12 q^{-6} -2 q^{-7} +9 q^{-8} +3 q^{-9} -6 q^{-10} -4 q^{-11} +5 q^{-12} +3 q^{-13} - q^{-14} -4 q^{-15} +2 q^{-16} + q^{-17} -2 q^{-19} + q^{-20} - q^{-23} + q^{-24} </math>|J4=<math>q^{40}-q^{39}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{32}-3 q^{31}+3 q^{30}-4 q^{29}+2 q^{28}+5 q^{27}-4 q^{26}+4 q^{25}-9 q^{24}+q^{23}+7 q^{22}-2 q^{21}+10 q^{20}-14 q^{19}-4 q^{18}+4 q^{17}-q^{16}+21 q^{15}-14 q^{14}-9 q^{13}-3 q^{12}-4 q^{11}+34 q^{10}-12 q^9-12 q^8-9 q^7-8 q^6+42 q^5-10 q^4-12 q^3-12 q^2-10 q+45-10 q^{-1} -12 q^{-2} -12 q^{-3} -10 q^{-4} +42 q^{-5} -8 q^{-6} -9 q^{-7} -12 q^{-8} -12 q^{-9} +34 q^{-10} -4 q^{-11} -3 q^{-12} -9 q^{-13} -14 q^{-14} +21 q^{-15} - q^{-16} +4 q^{-17} -4 q^{-18} -14 q^{-19} +10 q^{-20} -2 q^{-21} +7 q^{-22} + q^{-23} -9 q^{-24} +4 q^{-25} -4 q^{-26} +5 q^{-27} +2 q^{-28} -4 q^{-29} +3 q^{-30} -3 q^{-31} + q^{-32} + q^{-33} -2 q^{-34} +2 q^{-35} - q^{-36} - q^{-39} + q^{-40} </math>|J5=<math>q^{60}-q^{59}-q^{56}+2 q^{54}-q^{53}+q^{51}-2 q^{50}-2 q^{49}+3 q^{48}+q^{46}+3 q^{45}-2 q^{44}-5 q^{43}+2 q^{40}+8 q^{39}-5 q^{37}-4 q^{36}-6 q^{35}-q^{34}+10 q^{33}+6 q^{32}+3 q^{31}-2 q^{30}-11 q^{29}-12 q^{28}+2 q^{27}+9 q^{26}+14 q^{25}+10 q^{24}-7 q^{23}-21 q^{22}-16 q^{21}+2 q^{20}+22 q^{19}+26 q^{18}+5 q^{17}-23 q^{16}-35 q^{15}-10 q^{14}+25 q^{13}+38 q^{12}+16 q^{11}-22 q^{10}-45 q^9-19 q^8+24 q^7+44 q^6+22 q^5-22 q^4-47 q^3-22 q^2+22 q+47+22 q^{-1} -22 q^{-2} -47 q^{-3} -22 q^{-4} +22 q^{-5} +44 q^{-6} +24 q^{-7} -19 q^{-8} -45 q^{-9} -22 q^{-10} +16 q^{-11} +38 q^{-12} +25 q^{-13} -10 q^{-14} -35 q^{-15} -23 q^{-16} +5 q^{-17} +26 q^{-18} +22 q^{-19} +2 q^{-20} -16 q^{-21} -21 q^{-22} -7 q^{-23} +10 q^{-24} +14 q^{-25} +9 q^{-26} +2 q^{-27} -12 q^{-28} -11 q^{-29} -2 q^{-30} +3 q^{-31} +6 q^{-32} +10 q^{-33} - q^{-34} -6 q^{-35} -4 q^{-36} -5 q^{-37} +8 q^{-39} +2 q^{-40} -5 q^{-43} -2 q^{-44} +3 q^{-45} + q^{-46} +3 q^{-48} -2 q^{-49} -2 q^{-50} + q^{-51} - q^{-53} +2 q^{-54} - q^{-56} - q^{-59} + q^{-60} </math>|J6=<math>q^{84}-q^{83}-q^{80}+3 q^{77}-2 q^{76}+q^{74}-2 q^{73}-q^{72}-q^{71}+6 q^{70}-2 q^{69}+3 q^{67}-4 q^{66}-3 q^{65}-4 q^{64}+9 q^{63}-q^{62}+q^{61}+7 q^{60}-4 q^{59}-7 q^{58}-11 q^{57}+10 q^{56}-2 q^{55}+2 q^{54}+15 q^{53}+2 q^{52}-6 q^{51}-17 q^{50}+7 q^{49}-13 q^{48}-5 q^{47}+20 q^{46}+12 q^{45}+7 q^{44}-11 q^{43}+13 q^{42}-29 q^{41}-25 q^{40}+8 q^{39}+12 q^{38}+21 q^{37}+10 q^{36}+39 q^{35}-32 q^{34}-44 q^{33}-21 q^{32}-8 q^{31}+19 q^{30}+29 q^{29}+82 q^{28}-15 q^{27}-50 q^{26}-50 q^{25}-40 q^{24}+q^{23}+36 q^{22}+124 q^{21}+9 q^{20}-45 q^{19}-68 q^{18}-65 q^{17}-19 q^{16}+34 q^{15}+151 q^{14}+25 q^{13}-38 q^{12}-76 q^{11}-76 q^{10}-31 q^9+31 q^8+163 q^7+29 q^6-34 q^5-78 q^4-78 q^3-34 q^2+29 q+167+29 q^{-1} -34 q^{-2} -78 q^{-3} -78 q^{-4} -34 q^{-5} +29 q^{-6} +163 q^{-7} +31 q^{-8} -31 q^{-9} -76 q^{-10} -76 q^{-11} -38 q^{-12} +25 q^{-13} +151 q^{-14} +34 q^{-15} -19 q^{-16} -65 q^{-17} -68 q^{-18} -45 q^{-19} +9 q^{-20} +124 q^{-21} +36 q^{-22} + q^{-23} -40 q^{-24} -50 q^{-25} -50 q^{-26} -15 q^{-27} +82 q^{-28} +29 q^{-29} +19 q^{-30} -8 q^{-31} -21 q^{-32} -44 q^{-33} -32 q^{-34} +39 q^{-35} +10 q^{-36} +21 q^{-37} +12 q^{-38} +8 q^{-39} -25 q^{-40} -29 q^{-41} +13 q^{-42} -11 q^{-43} +7 q^{-44} +12 q^{-45} +20 q^{-46} -5 q^{-47} -13 q^{-48} +7 q^{-49} -17 q^{-50} -6 q^{-51} +2 q^{-52} +15 q^{-53} +2 q^{-54} -2 q^{-55} +10 q^{-56} -11 q^{-57} -7 q^{-58} -4 q^{-59} +7 q^{-60} + q^{-61} - q^{-62} +9 q^{-63} -4 q^{-64} -3 q^{-65} -4 q^{-66} +3 q^{-67} -2 q^{-69} +6 q^{-70} - q^{-71} - q^{-72} -2 q^{-73} + q^{-74} -2 q^{-76} +3 q^{-77} - q^{-80} - q^{-83} + q^{-84} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{40}-q^{39}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{32}-3 q^{31}+3 q^{30}-4 q^{29}+2 q^{28}+5 q^{27}-4 q^{26}+4 q^{25}-9 q^{24}+q^{23}+7 q^{22}-2 q^{21}+10 q^{20}-14 q^{19}-4 q^{18}+4 q^{17}-q^{16}+21 q^{15}-14 q^{14}-9 q^{13}-3 q^{12}-4 q^{11}+34 q^{10}-12 q^9-12 q^8-9 q^7-8 q^6+42 q^5-10 q^4-12 q^3-12 q^2-10 q+45-10 q^{-1} -12 q^{-2} -12 q^{-3} -10 q^{-4} +42 q^{-5} -8 q^{-6} -9 q^{-7} -12 q^{-8} -12 q^{-9} +34 q^{-10} -4 q^{-11} -3 q^{-12} -9 q^{-13} -14 q^{-14} +21 q^{-15} - q^{-16} +4 q^{-17} -4 q^{-18} -14 q^{-19} +10 q^{-20} -2 q^{-21} +7 q^{-22} + q^{-23} -9 q^{-24} +4 q^{-25} -4 q^{-26} +5 q^{-27} +2 q^{-28} -4 q^{-29} +3 q^{-30} -3 q^{-31} + q^{-32} + q^{-33} -2 q^{-34} +2 q^{-35} - q^{-36} - q^{-39} + q^{-40} </math> | |
|||
coloured_jones_5 = <math>q^{60}-q^{59}-q^{56}+2 q^{54}-q^{53}+q^{51}-2 q^{50}-2 q^{49}+3 q^{48}+q^{46}+3 q^{45}-2 q^{44}-5 q^{43}+2 q^{40}+8 q^{39}-5 q^{37}-4 q^{36}-6 q^{35}-q^{34}+10 q^{33}+6 q^{32}+3 q^{31}-2 q^{30}-11 q^{29}-12 q^{28}+2 q^{27}+9 q^{26}+14 q^{25}+10 q^{24}-7 q^{23}-21 q^{22}-16 q^{21}+2 q^{20}+22 q^{19}+26 q^{18}+5 q^{17}-23 q^{16}-35 q^{15}-10 q^{14}+25 q^{13}+38 q^{12}+16 q^{11}-22 q^{10}-45 q^9-19 q^8+24 q^7+44 q^6+22 q^5-22 q^4-47 q^3-22 q^2+22 q+47+22 q^{-1} -22 q^{-2} -47 q^{-3} -22 q^{-4} +22 q^{-5} +44 q^{-6} +24 q^{-7} -19 q^{-8} -45 q^{-9} -22 q^{-10} +16 q^{-11} +38 q^{-12} +25 q^{-13} -10 q^{-14} -35 q^{-15} -23 q^{-16} +5 q^{-17} +26 q^{-18} +22 q^{-19} +2 q^{-20} -16 q^{-21} -21 q^{-22} -7 q^{-23} +10 q^{-24} +14 q^{-25} +9 q^{-26} +2 q^{-27} -12 q^{-28} -11 q^{-29} -2 q^{-30} +3 q^{-31} +6 q^{-32} +10 q^{-33} - q^{-34} -6 q^{-35} -4 q^{-36} -5 q^{-37} +8 q^{-39} +2 q^{-40} -5 q^{-43} -2 q^{-44} +3 q^{-45} + q^{-46} +3 q^{-48} -2 q^{-49} -2 q^{-50} + q^{-51} - q^{-53} +2 q^{-54} - q^{-56} - q^{-59} + q^{-60} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{84}-q^{83}-q^{80}+3 q^{77}-2 q^{76}+q^{74}-2 q^{73}-q^{72}-q^{71}+6 q^{70}-2 q^{69}+3 q^{67}-4 q^{66}-3 q^{65}-4 q^{64}+9 q^{63}-q^{62}+q^{61}+7 q^{60}-4 q^{59}-7 q^{58}-11 q^{57}+10 q^{56}-2 q^{55}+2 q^{54}+15 q^{53}+2 q^{52}-6 q^{51}-17 q^{50}+7 q^{49}-13 q^{48}-5 q^{47}+20 q^{46}+12 q^{45}+7 q^{44}-11 q^{43}+13 q^{42}-29 q^{41}-25 q^{40}+8 q^{39}+12 q^{38}+21 q^{37}+10 q^{36}+39 q^{35}-32 q^{34}-44 q^{33}-21 q^{32}-8 q^{31}+19 q^{30}+29 q^{29}+82 q^{28}-15 q^{27}-50 q^{26}-50 q^{25}-40 q^{24}+q^{23}+36 q^{22}+124 q^{21}+9 q^{20}-45 q^{19}-68 q^{18}-65 q^{17}-19 q^{16}+34 q^{15}+151 q^{14}+25 q^{13}-38 q^{12}-76 q^{11}-76 q^{10}-31 q^9+31 q^8+163 q^7+29 q^6-34 q^5-78 q^4-78 q^3-34 q^2+29 q+167+29 q^{-1} -34 q^{-2} -78 q^{-3} -78 q^{-4} -34 q^{-5} +29 q^{-6} +163 q^{-7} +31 q^{-8} -31 q^{-9} -76 q^{-10} -76 q^{-11} -38 q^{-12} +25 q^{-13} +151 q^{-14} +34 q^{-15} -19 q^{-16} -65 q^{-17} -68 q^{-18} -45 q^{-19} +9 q^{-20} +124 q^{-21} +36 q^{-22} + q^{-23} -40 q^{-24} -50 q^{-25} -50 q^{-26} -15 q^{-27} +82 q^{-28} +29 q^{-29} +19 q^{-30} -8 q^{-31} -21 q^{-32} -44 q^{-33} -32 q^{-34} +39 q^{-35} +10 q^{-36} +21 q^{-37} +12 q^{-38} +8 q^{-39} -25 q^{-40} -29 q^{-41} +13 q^{-42} -11 q^{-43} +7 q^{-44} +12 q^{-45} +20 q^{-46} -5 q^{-47} -13 q^{-48} +7 q^{-49} -17 q^{-50} -6 q^{-51} +2 q^{-52} +15 q^{-53} +2 q^{-54} -2 q^{-55} +10 q^{-56} -11 q^{-57} -7 q^{-58} -4 q^{-59} +7 q^{-60} + q^{-61} - q^{-62} +9 q^{-63} -4 q^{-64} -3 q^{-65} -4 q^{-66} +3 q^{-67} -2 q^{-69} +6 q^{-70} - q^{-71} - q^{-72} -2 q^{-73} + q^{-74} -2 q^{-76} +3 q^{-77} - q^{-80} - q^{-83} + q^{-84} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 3]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 5, 11, 6], X[12, 3, 13, 4], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[14, 10, 15, 9], X[10, 5, 11, 6], X[12, 3, 13, 4], |
|||
X[4, 11, 5, 12], X[2, 13, 3, 14], X[16, 8, 1, 7], X[8, 16, 9, 15]]</nowiki></ |
X[4, 11, 5, 12], X[2, 13, 3, 14], X[16, 8, 1, 7], X[8, 16, 9, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 3]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 3]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 3]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -2, 1, 3, -2, 3, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 12, 10, 16, 14, 4, 2, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 3]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_3_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, -2, 1, 3, -2, 3, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 3]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 3]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_3_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 3]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 2, 1, 2, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 3]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 |
|||
9 - - - 4 t |
9 - - - 4 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 3]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 3]][z]</nowiki></code></td></tr> |
|||
1 - 4 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
1 - 4 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 3]], KnotSignature[Knot[8, 3]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{17, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -3 2 3 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 3], Knot[10, 1]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 3]], KnotSignature[Knot[8, 3]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{17, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 3]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 -3 2 3 2 3 4 |
|||
3 + q - q + -- - - - 3 q + 2 q - q + q |
3 + q - q + -- - - - 3 q + 2 q - q + q |
||
2 q |
2 q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 3]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 3]}</nowiki></code></td></tr> |
|||
-1 + q + q + q - q - q + q + q + q</nowiki></pre></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 3]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 3]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -12 -8 -4 4 8 12 14 |
|||
-1 + q + q + q - q - q + q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 3]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-4 4 2 z 2 2 |
-4 4 2 z 2 2 |
||
-1 + a + a - 2 z - -- - a z |
-1 + a + a - 2 z - -- - a z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 3]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 3]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 4 4 z 2 3 z z 2 2 4 2 |
-4 4 4 z 2 3 z z 2 2 4 2 |
||
-1 + a + a - --- - 4 a z + 8 z - ---- + -- + a z - 3 a z - |
-1 + a + a - --- - 4 a z + 8 z - ---- + -- + a z - 3 a z - |
||
Line 161: | Line 203: | ||
-- - ---- - 4 a z + a z + 2 z + -- + a z + -- + a z |
-- - ---- - 4 a z + a z + 2 z + -- + a z + -- + a z |
||
3 a 2 a |
3 a 2 a |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 3]], Vassiliev[3][Knot[8, 3]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 3]], Vassiliev[3][Knot[8, 3]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 3]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-4, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 3]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 2 1 2 3 5 2 |
|||
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + q t + 2 q t + |
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + q t + 2 q t + |
||
q 9 4 5 3 5 2 3 q t |
q 9 4 5 3 5 2 3 q t |
||
Line 173: | Line 223: | ||
5 3 9 4 |
5 3 9 4 |
||
q t + q t</nowiki></ |
q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 3], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 3], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -11 2 3 -7 5 4 3 9 5 5 |
|||
11 + q - q + -- - -- - q + -- - -- - -- + -- - -- - - - 5 q - |
11 + q - q + -- - -- - q + -- - -- - -- + -- - -- - - - 5 q - |
||
9 8 6 5 4 3 2 q |
9 8 6 5 4 3 2 q |
||
Line 182: | Line 236: | ||
2 3 4 5 6 7 8 9 11 12 |
2 3 4 5 6 7 8 9 11 12 |
||
5 q + 9 q - 3 q - 4 q + 5 q - q - 3 q + 2 q - q + q</nowiki></ |
5 q + 9 q - 3 q - 4 q + 5 q - q - 3 q + 2 q - q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X14,10,15,9 X10,5,11,6 X12,3,13,4 X4,11,5,12 X2,13,3,14 X16,8,1,7 X8,16,9,15 |
Gauss code | 1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7 |
Dowker-Thistlethwaite code | 6 12 10 16 14 4 2 8 |
Conway Notation | [44] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{5, 7}, {8, 6}, {7, 9}, {10, 8}, {9, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 10}, {6, 1}] |
[edit Notes on presentations of 8 3]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 3"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,10,15,9 X10,5,11,6 X12,3,13,4 X4,11,5,12 X2,13,3,14 X16,8,1,7 X8,16,9,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 12 10 16 14 4 2 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[44] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 7}, {8, 6}, {7, 9}, {10, 8}, {9, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 10}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_1,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 3"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_1,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-4, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|