10 5: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 5 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,7,-5,8,-6,9,-10,2,-3,4,-7,5,-8,6,-9,3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,7,-5,8,-6,9,-10,2,-3,4,-7,5,-8,6,-9,3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 71: | Line 39: | ||
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{25}-2 q^{24}+4 q^{22}-5 q^{21}+7 q^{19}-8 q^{18}+q^{17}+8 q^{16}-11 q^{15}+3 q^{14}+9 q^{13}-13 q^{12}+3 q^{11}+11 q^{10}-14 q^9+q^8+13 q^7-12 q^6-q^5+13 q^4-9 q^3-3 q^2+10 q-4-4 q^{-1} +5 q^{-2} - q^{-3} -2 q^{-4} + q^{-5} </math> | |
|||
coloured_jones_3 = <math>-q^{48}+2 q^{47}-q^{45}-3 q^{44}+4 q^{43}+3 q^{42}-4 q^{41}-7 q^{40}+6 q^{39}+10 q^{38}-6 q^{37}-14 q^{36}+5 q^{35}+18 q^{34}-2 q^{33}-22 q^{32}-q^{31}+24 q^{30}+5 q^{29}-24 q^{28}-9 q^{27}+23 q^{26}+11 q^{25}-22 q^{24}-10 q^{23}+20 q^{22}+7 q^{21}-17 q^{20}-6 q^{19}+19 q^{18}-2 q^{17}-14 q^{16}+18 q^{14}-9 q^{13}-11 q^{12}+6 q^{11}+16 q^{10}-13 q^9-11 q^8+10 q^7+17 q^6-13 q^5-14 q^4+8 q^3+18 q^2-7 q-15+2 q^{-1} +14 q^{-2} + q^{-3} -11 q^{-4} -3 q^{-5} +7 q^{-6} +3 q^{-7} -4 q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} - q^{-12} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{25}-2 q^{24}+4 q^{22}-5 q^{21}+7 q^{19}-8 q^{18}+q^{17}+8 q^{16}-11 q^{15}+3 q^{14}+9 q^{13}-13 q^{12}+3 q^{11}+11 q^{10}-14 q^9+q^8+13 q^7-12 q^6-q^5+13 q^4-9 q^3-3 q^2+10 q-4-4 q^{-1} +5 q^{-2} - q^{-3} -2 q^{-4} + q^{-5} </math>|J3=<math>-q^{48}+2 q^{47}-q^{45}-3 q^{44}+4 q^{43}+3 q^{42}-4 q^{41}-7 q^{40}+6 q^{39}+10 q^{38}-6 q^{37}-14 q^{36}+5 q^{35}+18 q^{34}-2 q^{33}-22 q^{32}-q^{31}+24 q^{30}+5 q^{29}-24 q^{28}-9 q^{27}+23 q^{26}+11 q^{25}-22 q^{24}-10 q^{23}+20 q^{22}+7 q^{21}-17 q^{20}-6 q^{19}+19 q^{18}-2 q^{17}-14 q^{16}+18 q^{14}-9 q^{13}-11 q^{12}+6 q^{11}+16 q^{10}-13 q^9-11 q^8+10 q^7+17 q^6-13 q^5-14 q^4+8 q^3+18 q^2-7 q-15+2 q^{-1} +14 q^{-2} + q^{-3} -11 q^{-4} -3 q^{-5} +7 q^{-6} +3 q^{-7} -4 q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} - q^{-12} </math>|J4=<math>q^{78}-2 q^{77}+q^{75}+4 q^{73}-7 q^{72}+q^{71}+2 q^{70}+q^{69}+9 q^{68}-18 q^{67}+q^{66}+5 q^{65}+8 q^{64}+16 q^{63}-36 q^{62}-4 q^{61}+8 q^{60}+25 q^{59}+29 q^{58}-61 q^{57}-19 q^{56}+9 q^{55}+52 q^{54}+49 q^{53}-88 q^{52}-44 q^{51}+4 q^{50}+84 q^{49}+77 q^{48}-107 q^{47}-71 q^{46}-11 q^{45}+104 q^{44}+105 q^{43}-108 q^{42}-86 q^{41}-30 q^{40}+105 q^{39}+118 q^{38}-99 q^{37}-82 q^{36}-37 q^{35}+91 q^{34}+115 q^{33}-89 q^{32}-71 q^{31}-35 q^{30}+75 q^{29}+108 q^{28}-80 q^{27}-58 q^{26}-32 q^{25}+54 q^{24}+99 q^{23}-66 q^{22}-42 q^{21}-29 q^{20}+30 q^{19}+85 q^{18}-52 q^{17}-23 q^{16}-20 q^{15}+11 q^{14}+66 q^{13}-43 q^{12}-10 q^{11}-9 q^{10}+4 q^9+51 q^8-40 q^7-8 q^6-4 q^5+6 q^4+46 q^3-34 q^2-13 q-9+5 q^{-1} +45 q^{-2} -19 q^{-3} -12 q^{-4} -16 q^{-5} -4 q^{-6} +35 q^{-7} -3 q^{-8} -4 q^{-9} -14 q^{-10} -10 q^{-11} +18 q^{-12} +2 q^{-13} +2 q^{-14} -5 q^{-15} -7 q^{-16} +5 q^{-17} + q^{-18} +2 q^{-19} - q^{-20} -2 q^{-21} + q^{-22} </math>|J5=<math>-q^{115}+2 q^{114}-q^{112}-q^{110}-q^{109}+3 q^{108}+q^{107}-3 q^{106}+q^{105}-q^{104}+5 q^{102}-q^{101}-7 q^{100}-q^{99}+q^{98}+6 q^{97}+11 q^{96}-2 q^{95}-18 q^{94}-13 q^{93}+3 q^{92}+21 q^{91}+26 q^{90}-35 q^{88}-37 q^{87}+2 q^{86}+45 q^{85}+50 q^{84}-3 q^{83}-61 q^{82}-63 q^{81}+7 q^{80}+83 q^{79}+77 q^{78}-17 q^{77}-108 q^{76}-92 q^{75}+27 q^{74}+137 q^{73}+114 q^{72}-37 q^{71}-170 q^{70}-138 q^{69}+41 q^{68}+199 q^{67}+164 q^{66}-37 q^{65}-219 q^{64}-192 q^{63}+26 q^{62}+233 q^{61}+211 q^{60}-15 q^{59}-228 q^{58}-224 q^{57}-2 q^{56}+224 q^{55}+226 q^{54}+12 q^{53}-209 q^{52}-224 q^{51}-23 q^{50}+198 q^{49}+217 q^{48}+33 q^{47}-180 q^{46}-220 q^{45}-43 q^{44}+173 q^{43}+208 q^{42}+58 q^{41}-146 q^{40}-221 q^{39}-70 q^{38}+139 q^{37}+202 q^{36}+90 q^{35}-103 q^{34}-211 q^{33}-103 q^{32}+90 q^{31}+182 q^{30}+117 q^{29}-48 q^{28}-179 q^{27}-122 q^{26}+31 q^{25}+141 q^{24}+124 q^{23}+4 q^{22}-124 q^{21}-114 q^{20}-16 q^{19}+82 q^{18}+104 q^{17}+37 q^{16}-66 q^{15}-82 q^{14}-33 q^{13}+33 q^{12}+66 q^{11}+43 q^{10}-30 q^9-52 q^8-25 q^7+13 q^6+40 q^5+34 q^4-18 q^3-41 q^2-22 q+9+37 q^{-1} +34 q^{-2} -9 q^{-3} -38 q^{-4} -32 q^{-5} -4 q^{-6} +31 q^{-7} +41 q^{-8} +10 q^{-9} -24 q^{-10} -34 q^{-11} -21 q^{-12} +10 q^{-13} +31 q^{-14} +25 q^{-15} -4 q^{-16} -20 q^{-17} -20 q^{-18} -7 q^{-19} +11 q^{-20} +18 q^{-21} +7 q^{-22} -6 q^{-23} -8 q^{-24} -6 q^{-25} -2 q^{-26} +7 q^{-27} +5 q^{-28} - q^{-29} -2 q^{-30} - q^{-31} -2 q^{-32} + q^{-33} +2 q^{-34} - q^{-35} </math>|J6=<math>q^{159}-2 q^{158}+q^{156}+q^{154}-2 q^{153}+5 q^{152}-5 q^{151}+q^{149}-2 q^{148}+2 q^{147}-6 q^{146}+13 q^{145}-8 q^{144}+5 q^{143}+q^{142}-7 q^{141}+q^{140}-16 q^{139}+20 q^{138}-11 q^{137}+19 q^{136}+7 q^{135}-7 q^{134}-q^{133}-39 q^{132}+14 q^{131}-24 q^{130}+44 q^{129}+27 q^{128}+9 q^{127}+10 q^{126}-72 q^{125}-12 q^{124}-59 q^{123}+62 q^{122}+51 q^{121}+42 q^{120}+45 q^{119}-89 q^{118}-35 q^{117}-110 q^{116}+56 q^{115}+42 q^{114}+59 q^{113}+94 q^{112}-65 q^{111}-6 q^{110}-134 q^{109}+32 q^{108}-33 q^{107}+5 q^{106}+112 q^{105}-7 q^{104}+104 q^{103}-76 q^{102}+37 q^{101}-150 q^{100}-136 q^{99}+46 q^{98}+23 q^{97}+247 q^{96}+65 q^{95}+125 q^{94}-225 q^{93}-291 q^{92}-92 q^{91}-35 q^{90}+323 q^{89}+203 q^{88}+270 q^{87}-201 q^{86}-362 q^{85}-209 q^{84}-139 q^{83}+295 q^{82}+251 q^{81}+372 q^{80}-133 q^{79}-334 q^{78}-235 q^{77}-200 q^{76}+231 q^{75}+216 q^{74}+387 q^{73}-87 q^{72}-274 q^{71}-203 q^{70}-210 q^{69}+180 q^{68}+162 q^{67}+365 q^{66}-50 q^{65}-214 q^{64}-172 q^{63}-225 q^{62}+122 q^{61}+107 q^{60}+356 q^{59}+22 q^{58}-135 q^{57}-153 q^{56}-270 q^{55}+32 q^{54}+35 q^{53}+353 q^{52}+128 q^{51}-20 q^{50}-120 q^{49}-323 q^{48}-84 q^{47}-66 q^{46}+328 q^{45}+233 q^{44}+117 q^{43}-53 q^{42}-342 q^{41}-191 q^{40}-192 q^{39}+252 q^{38}+290 q^{37}+242 q^{36}+54 q^{35}-290 q^{34}-242 q^{33}-310 q^{32}+119 q^{31}+257 q^{30}+304 q^{29}+167 q^{28}-164 q^{27}-196 q^{26}-365 q^{25}-25 q^{24}+140 q^{23}+265 q^{22}+223 q^{21}-24 q^{20}-71 q^{19}-319 q^{18}-109 q^{17}+12 q^{16}+152 q^{15}+186 q^{14}+55 q^{13}+52 q^{12}-212 q^{11}-103 q^{10}-53 q^9+50 q^8+102 q^7+57 q^6+106 q^5-127 q^4-60 q^3-54 q^2+7 q+45+40 q^{-1} +109 q^{-2} -89 q^{-3} -41 q^{-4} -51 q^{-5} -7 q^{-6} +22 q^{-7} +43 q^{-8} +113 q^{-9} -57 q^{-10} -32 q^{-11} -60 q^{-12} -32 q^{-13} -8 q^{-14} +36 q^{-15} +115 q^{-16} -11 q^{-17} -4 q^{-18} -47 q^{-19} -44 q^{-20} -42 q^{-21} +3 q^{-22} +83 q^{-23} +15 q^{-24} +24 q^{-25} -14 q^{-26} -24 q^{-27} -44 q^{-28} -21 q^{-29} +37 q^{-30} +8 q^{-31} +23 q^{-32} +6 q^{-33} - q^{-34} -22 q^{-35} -18 q^{-36} +10 q^{-37} - q^{-38} +9 q^{-39} +5 q^{-40} +5 q^{-41} -7 q^{-42} -7 q^{-43} +3 q^{-44} -2 q^{-45} +2 q^{-46} + q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} </math>|J7=<math>-q^{210}+2 q^{209}-q^{207}-q^{205}+2 q^{204}-2 q^{203}-3 q^{202}+4 q^{201}+2 q^{200}+q^{198}-3 q^{197}+5 q^{196}-4 q^{195}-12 q^{194}+4 q^{193}+3 q^{192}+5 q^{191}+7 q^{190}-2 q^{189}+11 q^{188}-5 q^{187}-24 q^{186}-6 q^{185}-8 q^{184}+7 q^{183}+22 q^{182}+11 q^{181}+30 q^{180}+6 q^{179}-36 q^{178}-30 q^{177}-46 q^{176}-18 q^{175}+30 q^{174}+43 q^{173}+84 q^{172}+52 q^{171}-25 q^{170}-56 q^{169}-122 q^{168}-104 q^{167}-10 q^{166}+68 q^{165}+176 q^{164}+167 q^{163}+55 q^{162}-50 q^{161}-217 q^{160}-264 q^{159}-141 q^{158}+22 q^{157}+264 q^{156}+359 q^{155}+246 q^{154}+51 q^{153}-277 q^{152}-469 q^{151}-396 q^{150}-165 q^{149}+269 q^{148}+580 q^{147}+566 q^{146}+321 q^{145}-206 q^{144}-663 q^{143}-765 q^{142}-543 q^{141}+89 q^{140}+723 q^{139}+973 q^{138}+798 q^{137}+92 q^{136}-725 q^{135}-1155 q^{134}-1087 q^{133}-342 q^{132}+656 q^{131}+1304 q^{130}+1377 q^{129}+623 q^{128}-520 q^{127}-1371 q^{126}-1616 q^{125}-926 q^{124}+315 q^{123}+1360 q^{122}+1790 q^{121}+1198 q^{120}-89 q^{119}-1271 q^{118}-1871 q^{117}-1398 q^{116}-129 q^{115}+1129 q^{114}+1860 q^{113}+1520 q^{112}+311 q^{111}-985 q^{110}-1803 q^{109}-1556 q^{108}-402 q^{107}+862 q^{106}+1699 q^{105}+1528 q^{104}+454 q^{103}-782 q^{102}-1624 q^{101}-1473 q^{100}-435 q^{99}+750 q^{98}+1550 q^{97}+1398 q^{96}+407 q^{95}-728 q^{94}-1497 q^{93}-1349 q^{92}-378 q^{91}+728 q^{90}+1454 q^{89}+1277 q^{88}+356 q^{87}-685 q^{86}-1388 q^{85}-1236 q^{84}-356 q^{83}+647 q^{82}+1310 q^{81}+1150 q^{80}+362 q^{79}-552 q^{78}-1196 q^{77}-1085 q^{76}-371 q^{75}+467 q^{74}+1060 q^{73}+963 q^{72}+380 q^{71}-335 q^{70}-900 q^{69}-855 q^{68}-372 q^{67}+228 q^{66}+719 q^{65}+681 q^{64}+354 q^{63}-91 q^{62}-523 q^{61}-528 q^{60}-301 q^{59}+11 q^{58}+325 q^{57}+304 q^{56}+215 q^{55}+91 q^{54}-140 q^{53}-120 q^{52}-99 q^{51}-87 q^{50}-9 q^{49}-119 q^{48}-59 q^{47}+92 q^{46}+119 q^{45}+272 q^{44}+215 q^{43}+17 q^{42}-145 q^{41}-430 q^{40}-395 q^{39}-109 q^{38}+120 q^{37}+478 q^{36}+506 q^{35}+271 q^{34}-13 q^{33}-480 q^{32}-594 q^{31}-382 q^{30}-115 q^{29}+383 q^{28}+585 q^{27}+483 q^{26}+260 q^{25}-255 q^{24}-518 q^{23}-490 q^{22}-382 q^{21}+89 q^{20}+393 q^{19}+466 q^{18}+433 q^{17}+39 q^{16}-235 q^{15}-347 q^{14}-447 q^{13}-153 q^{12}+104 q^{11}+243 q^{10}+383 q^9+179 q^8+12 q^7-101 q^6-314 q^5-192 q^4-64 q^3+24 q^2+220 q+151+93 q^{-1} +47 q^{-2} -162 q^{-3} -124 q^{-4} -85 q^{-5} -74 q^{-6} +106 q^{-7} +97 q^{-8} +91 q^{-9} +93 q^{-10} -85 q^{-11} -82 q^{-12} -80 q^{-13} -109 q^{-14} +44 q^{-15} +66 q^{-16} +95 q^{-17} +128 q^{-18} -20 q^{-19} -51 q^{-20} -78 q^{-21} -135 q^{-22} -26 q^{-23} +12 q^{-24} +68 q^{-25} +144 q^{-26} +49 q^{-27} +12 q^{-28} -35 q^{-29} -115 q^{-30} -63 q^{-31} -50 q^{-32} - q^{-33} +92 q^{-34} +67 q^{-35} +52 q^{-36} +21 q^{-37} -52 q^{-38} -39 q^{-39} -54 q^{-40} -44 q^{-41} +25 q^{-42} +29 q^{-43} +42 q^{-44} +33 q^{-45} -9 q^{-46} -5 q^{-47} -20 q^{-48} -33 q^{-49} -6 q^{-50} +2 q^{-51} +16 q^{-52} +19 q^{-53} -2 q^{-54} +4 q^{-55} - q^{-56} -11 q^{-57} -5 q^{-58} -4 q^{-59} +4 q^{-60} +7 q^{-61} - q^{-62} +2 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math>}} |
|||
coloured_jones_4 = <math>q^{78}-2 q^{77}+q^{75}+4 q^{73}-7 q^{72}+q^{71}+2 q^{70}+q^{69}+9 q^{68}-18 q^{67}+q^{66}+5 q^{65}+8 q^{64}+16 q^{63}-36 q^{62}-4 q^{61}+8 q^{60}+25 q^{59}+29 q^{58}-61 q^{57}-19 q^{56}+9 q^{55}+52 q^{54}+49 q^{53}-88 q^{52}-44 q^{51}+4 q^{50}+84 q^{49}+77 q^{48}-107 q^{47}-71 q^{46}-11 q^{45}+104 q^{44}+105 q^{43}-108 q^{42}-86 q^{41}-30 q^{40}+105 q^{39}+118 q^{38}-99 q^{37}-82 q^{36}-37 q^{35}+91 q^{34}+115 q^{33}-89 q^{32}-71 q^{31}-35 q^{30}+75 q^{29}+108 q^{28}-80 q^{27}-58 q^{26}-32 q^{25}+54 q^{24}+99 q^{23}-66 q^{22}-42 q^{21}-29 q^{20}+30 q^{19}+85 q^{18}-52 q^{17}-23 q^{16}-20 q^{15}+11 q^{14}+66 q^{13}-43 q^{12}-10 q^{11}-9 q^{10}+4 q^9+51 q^8-40 q^7-8 q^6-4 q^5+6 q^4+46 q^3-34 q^2-13 q-9+5 q^{-1} +45 q^{-2} -19 q^{-3} -12 q^{-4} -16 q^{-5} -4 q^{-6} +35 q^{-7} -3 q^{-8} -4 q^{-9} -14 q^{-10} -10 q^{-11} +18 q^{-12} +2 q^{-13} +2 q^{-14} -5 q^{-15} -7 q^{-16} +5 q^{-17} + q^{-18} +2 q^{-19} - q^{-20} -2 q^{-21} + q^{-22} </math> | |
|||
coloured_jones_5 = <math>-q^{115}+2 q^{114}-q^{112}-q^{110}-q^{109}+3 q^{108}+q^{107}-3 q^{106}+q^{105}-q^{104}+5 q^{102}-q^{101}-7 q^{100}-q^{99}+q^{98}+6 q^{97}+11 q^{96}-2 q^{95}-18 q^{94}-13 q^{93}+3 q^{92}+21 q^{91}+26 q^{90}-35 q^{88}-37 q^{87}+2 q^{86}+45 q^{85}+50 q^{84}-3 q^{83}-61 q^{82}-63 q^{81}+7 q^{80}+83 q^{79}+77 q^{78}-17 q^{77}-108 q^{76}-92 q^{75}+27 q^{74}+137 q^{73}+114 q^{72}-37 q^{71}-170 q^{70}-138 q^{69}+41 q^{68}+199 q^{67}+164 q^{66}-37 q^{65}-219 q^{64}-192 q^{63}+26 q^{62}+233 q^{61}+211 q^{60}-15 q^{59}-228 q^{58}-224 q^{57}-2 q^{56}+224 q^{55}+226 q^{54}+12 q^{53}-209 q^{52}-224 q^{51}-23 q^{50}+198 q^{49}+217 q^{48}+33 q^{47}-180 q^{46}-220 q^{45}-43 q^{44}+173 q^{43}+208 q^{42}+58 q^{41}-146 q^{40}-221 q^{39}-70 q^{38}+139 q^{37}+202 q^{36}+90 q^{35}-103 q^{34}-211 q^{33}-103 q^{32}+90 q^{31}+182 q^{30}+117 q^{29}-48 q^{28}-179 q^{27}-122 q^{26}+31 q^{25}+141 q^{24}+124 q^{23}+4 q^{22}-124 q^{21}-114 q^{20}-16 q^{19}+82 q^{18}+104 q^{17}+37 q^{16}-66 q^{15}-82 q^{14}-33 q^{13}+33 q^{12}+66 q^{11}+43 q^{10}-30 q^9-52 q^8-25 q^7+13 q^6+40 q^5+34 q^4-18 q^3-41 q^2-22 q+9+37 q^{-1} +34 q^{-2} -9 q^{-3} -38 q^{-4} -32 q^{-5} -4 q^{-6} +31 q^{-7} +41 q^{-8} +10 q^{-9} -24 q^{-10} -34 q^{-11} -21 q^{-12} +10 q^{-13} +31 q^{-14} +25 q^{-15} -4 q^{-16} -20 q^{-17} -20 q^{-18} -7 q^{-19} +11 q^{-20} +18 q^{-21} +7 q^{-22} -6 q^{-23} -8 q^{-24} -6 q^{-25} -2 q^{-26} +7 q^{-27} +5 q^{-28} - q^{-29} -2 q^{-30} - q^{-31} -2 q^{-32} + q^{-33} +2 q^{-34} - q^{-35} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{159}-2 q^{158}+q^{156}+q^{154}-2 q^{153}+5 q^{152}-5 q^{151}+q^{149}-2 q^{148}+2 q^{147}-6 q^{146}+13 q^{145}-8 q^{144}+5 q^{143}+q^{142}-7 q^{141}+q^{140}-16 q^{139}+20 q^{138}-11 q^{137}+19 q^{136}+7 q^{135}-7 q^{134}-q^{133}-39 q^{132}+14 q^{131}-24 q^{130}+44 q^{129}+27 q^{128}+9 q^{127}+10 q^{126}-72 q^{125}-12 q^{124}-59 q^{123}+62 q^{122}+51 q^{121}+42 q^{120}+45 q^{119}-89 q^{118}-35 q^{117}-110 q^{116}+56 q^{115}+42 q^{114}+59 q^{113}+94 q^{112}-65 q^{111}-6 q^{110}-134 q^{109}+32 q^{108}-33 q^{107}+5 q^{106}+112 q^{105}-7 q^{104}+104 q^{103}-76 q^{102}+37 q^{101}-150 q^{100}-136 q^{99}+46 q^{98}+23 q^{97}+247 q^{96}+65 q^{95}+125 q^{94}-225 q^{93}-291 q^{92}-92 q^{91}-35 q^{90}+323 q^{89}+203 q^{88}+270 q^{87}-201 q^{86}-362 q^{85}-209 q^{84}-139 q^{83}+295 q^{82}+251 q^{81}+372 q^{80}-133 q^{79}-334 q^{78}-235 q^{77}-200 q^{76}+231 q^{75}+216 q^{74}+387 q^{73}-87 q^{72}-274 q^{71}-203 q^{70}-210 q^{69}+180 q^{68}+162 q^{67}+365 q^{66}-50 q^{65}-214 q^{64}-172 q^{63}-225 q^{62}+122 q^{61}+107 q^{60}+356 q^{59}+22 q^{58}-135 q^{57}-153 q^{56}-270 q^{55}+32 q^{54}+35 q^{53}+353 q^{52}+128 q^{51}-20 q^{50}-120 q^{49}-323 q^{48}-84 q^{47}-66 q^{46}+328 q^{45}+233 q^{44}+117 q^{43}-53 q^{42}-342 q^{41}-191 q^{40}-192 q^{39}+252 q^{38}+290 q^{37}+242 q^{36}+54 q^{35}-290 q^{34}-242 q^{33}-310 q^{32}+119 q^{31}+257 q^{30}+304 q^{29}+167 q^{28}-164 q^{27}-196 q^{26}-365 q^{25}-25 q^{24}+140 q^{23}+265 q^{22}+223 q^{21}-24 q^{20}-71 q^{19}-319 q^{18}-109 q^{17}+12 q^{16}+152 q^{15}+186 q^{14}+55 q^{13}+52 q^{12}-212 q^{11}-103 q^{10}-53 q^9+50 q^8+102 q^7+57 q^6+106 q^5-127 q^4-60 q^3-54 q^2+7 q+45+40 q^{-1} +109 q^{-2} -89 q^{-3} -41 q^{-4} -51 q^{-5} -7 q^{-6} +22 q^{-7} +43 q^{-8} +113 q^{-9} -57 q^{-10} -32 q^{-11} -60 q^{-12} -32 q^{-13} -8 q^{-14} +36 q^{-15} +115 q^{-16} -11 q^{-17} -4 q^{-18} -47 q^{-19} -44 q^{-20} -42 q^{-21} +3 q^{-22} +83 q^{-23} +15 q^{-24} +24 q^{-25} -14 q^{-26} -24 q^{-27} -44 q^{-28} -21 q^{-29} +37 q^{-30} +8 q^{-31} +23 q^{-32} +6 q^{-33} - q^{-34} -22 q^{-35} -18 q^{-36} +10 q^{-37} - q^{-38} +9 q^{-39} +5 q^{-40} +5 q^{-41} -7 q^{-42} -7 q^{-43} +3 q^{-44} -2 q^{-45} +2 q^{-46} + q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} </math> | |
|||
coloured_jones_7 = <math>-q^{210}+2 q^{209}-q^{207}-q^{205}+2 q^{204}-2 q^{203}-3 q^{202}+4 q^{201}+2 q^{200}+q^{198}-3 q^{197}+5 q^{196}-4 q^{195}-12 q^{194}+4 q^{193}+3 q^{192}+5 q^{191}+7 q^{190}-2 q^{189}+11 q^{188}-5 q^{187}-24 q^{186}-6 q^{185}-8 q^{184}+7 q^{183}+22 q^{182}+11 q^{181}+30 q^{180}+6 q^{179}-36 q^{178}-30 q^{177}-46 q^{176}-18 q^{175}+30 q^{174}+43 q^{173}+84 q^{172}+52 q^{171}-25 q^{170}-56 q^{169}-122 q^{168}-104 q^{167}-10 q^{166}+68 q^{165}+176 q^{164}+167 q^{163}+55 q^{162}-50 q^{161}-217 q^{160}-264 q^{159}-141 q^{158}+22 q^{157}+264 q^{156}+359 q^{155}+246 q^{154}+51 q^{153}-277 q^{152}-469 q^{151}-396 q^{150}-165 q^{149}+269 q^{148}+580 q^{147}+566 q^{146}+321 q^{145}-206 q^{144}-663 q^{143}-765 q^{142}-543 q^{141}+89 q^{140}+723 q^{139}+973 q^{138}+798 q^{137}+92 q^{136}-725 q^{135}-1155 q^{134}-1087 q^{133}-342 q^{132}+656 q^{131}+1304 q^{130}+1377 q^{129}+623 q^{128}-520 q^{127}-1371 q^{126}-1616 q^{125}-926 q^{124}+315 q^{123}+1360 q^{122}+1790 q^{121}+1198 q^{120}-89 q^{119}-1271 q^{118}-1871 q^{117}-1398 q^{116}-129 q^{115}+1129 q^{114}+1860 q^{113}+1520 q^{112}+311 q^{111}-985 q^{110}-1803 q^{109}-1556 q^{108}-402 q^{107}+862 q^{106}+1699 q^{105}+1528 q^{104}+454 q^{103}-782 q^{102}-1624 q^{101}-1473 q^{100}-435 q^{99}+750 q^{98}+1550 q^{97}+1398 q^{96}+407 q^{95}-728 q^{94}-1497 q^{93}-1349 q^{92}-378 q^{91}+728 q^{90}+1454 q^{89}+1277 q^{88}+356 q^{87}-685 q^{86}-1388 q^{85}-1236 q^{84}-356 q^{83}+647 q^{82}+1310 q^{81}+1150 q^{80}+362 q^{79}-552 q^{78}-1196 q^{77}-1085 q^{76}-371 q^{75}+467 q^{74}+1060 q^{73}+963 q^{72}+380 q^{71}-335 q^{70}-900 q^{69}-855 q^{68}-372 q^{67}+228 q^{66}+719 q^{65}+681 q^{64}+354 q^{63}-91 q^{62}-523 q^{61}-528 q^{60}-301 q^{59}+11 q^{58}+325 q^{57}+304 q^{56}+215 q^{55}+91 q^{54}-140 q^{53}-120 q^{52}-99 q^{51}-87 q^{50}-9 q^{49}-119 q^{48}-59 q^{47}+92 q^{46}+119 q^{45}+272 q^{44}+215 q^{43}+17 q^{42}-145 q^{41}-430 q^{40}-395 q^{39}-109 q^{38}+120 q^{37}+478 q^{36}+506 q^{35}+271 q^{34}-13 q^{33}-480 q^{32}-594 q^{31}-382 q^{30}-115 q^{29}+383 q^{28}+585 q^{27}+483 q^{26}+260 q^{25}-255 q^{24}-518 q^{23}-490 q^{22}-382 q^{21}+89 q^{20}+393 q^{19}+466 q^{18}+433 q^{17}+39 q^{16}-235 q^{15}-347 q^{14}-447 q^{13}-153 q^{12}+104 q^{11}+243 q^{10}+383 q^9+179 q^8+12 q^7-101 q^6-314 q^5-192 q^4-64 q^3+24 q^2+220 q+151+93 q^{-1} +47 q^{-2} -162 q^{-3} -124 q^{-4} -85 q^{-5} -74 q^{-6} +106 q^{-7} +97 q^{-8} +91 q^{-9} +93 q^{-10} -85 q^{-11} -82 q^{-12} -80 q^{-13} -109 q^{-14} +44 q^{-15} +66 q^{-16} +95 q^{-17} +128 q^{-18} -20 q^{-19} -51 q^{-20} -78 q^{-21} -135 q^{-22} -26 q^{-23} +12 q^{-24} +68 q^{-25} +144 q^{-26} +49 q^{-27} +12 q^{-28} -35 q^{-29} -115 q^{-30} -63 q^{-31} -50 q^{-32} - q^{-33} +92 q^{-34} +67 q^{-35} +52 q^{-36} +21 q^{-37} -52 q^{-38} -39 q^{-39} -54 q^{-40} -44 q^{-41} +25 q^{-42} +29 q^{-43} +42 q^{-44} +33 q^{-45} -9 q^{-46} -5 q^{-47} -20 q^{-48} -33 q^{-49} -6 q^{-50} +2 q^{-51} +16 q^{-52} +19 q^{-53} -2 q^{-54} +4 q^{-55} - q^{-56} -11 q^{-57} -5 q^{-58} -4 q^{-59} +4 q^{-60} +7 q^{-61} - q^{-62} +2 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 5]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 5]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14], |
|||
X[7, 17, 8, 16], X[9, 19, 10, 18], X[15, 7, 16, 6], X[17, 9, 18, 8], |
X[7, 17, 8, 16], X[9, 19, 10, 18], X[15, 7, 16, 6], X[17, 9, 18, 8], |
||
X[19, 11, 20, 10], X[11, 2, 12, 3]]</nowiki></ |
X[19, 11, 20, 10], X[11, 2, 12, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 5]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 5]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, |
|||
6, -9, 3]</nowiki></ |
6, -9, 3]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 5]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 5]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 5]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 14, 16, 18, 2, 20, 6, 8, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 5]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 1, 1, 1, -2, 1, -2, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 5]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 5]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 5]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 5]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_5_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 5]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 4, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 5]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 5 5 2 3 4 |
|||
5 + t - -- + -- - - - 5 t + 5 t - 3 t + t |
5 + t - -- + -- - - - 5 t + 5 t - 3 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 5]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 5]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 4 z + 7 z + 5 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 5]], KnotSignature[Knot[10, 5]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 4}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 9 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 5]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 5]], KnotSignature[Knot[10, 5]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{33, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 5]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 1 2 3 4 5 6 7 8 9 |
|||
2 - - - 2 q + 4 q - 4 q + 5 q - 5 q + 4 q - 3 q + 2 q - q |
2 - - - 2 q + 4 q - 4 q + 5 q - 5 q + 4 q - 3 q + 2 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 5]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 5]}</nowiki></code></td></tr> |
|||
-q + q + 2 q + q + 2 q - q + q - q - q</nowiki></pre></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 5]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 5]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 6 8 10 12 14 22 26 |
|||
-q + q + 2 q + q + 2 q - q + q - q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 5]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6 6 |
|||
-3 5 -2 7 z 17 z 6 z 5 z 17 z 5 z z 7 z |
-3 5 -2 7 z 17 z 6 z 5 z 17 z 5 z z 7 z |
||
-- + -- - a - ---- + ----- - ---- - ---- + ----- - ---- - -- + ---- - |
-- + -- - a - ---- + ----- - ---- - ---- + ----- - ---- - -- + ---- - |
||
Line 152: | Line 190: | ||
-- + -- |
-- + -- |
||
2 4 |
2 4 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 5]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 5]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
3 5 -2 z z 3 z 2 z z 2 z z 9 z 22 z |
3 5 -2 z z 3 z 2 z z 2 z z 9 z 22 z |
||
-- + -- + a - --- - -- - --- - --- - - - ---- + -- - ---- - ----- - |
-- + -- + a - --- - -- - --- - --- - - - ---- + -- - ---- - ----- - |
||
Line 177: | Line 219: | ||
----- - ----- + ---- - ---- - ---- + -- + ---- + ---- + ---- + -- + -- |
----- - ----- + ---- - ---- - ---- + -- + ---- + ---- + ---- + -- + -- |
||
4 2 7 5 3 a 6 4 2 5 3 |
4 2 7 5 3 a 6 4 2 5 3 |
||
a a a a a a a a a a</nowiki></ |
a a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 5]], Vassiliev[3][Knot[10, 5]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 5]], Vassiliev[3][Knot[10, 5]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 5]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 7}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 5]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
3 5 1 1 q q q 5 7 7 2 |
3 5 1 1 q q q 5 7 7 2 |
||
3 q + 2 q + ----- + ---- + -- + - + -- + 2 q t + 2 q t + 3 q t + |
3 q + 2 q + ----- + ---- + -- + - + -- + 2 q t + 2 q t + 3 q t + |
||
Line 193: | Line 243: | ||
15 5 15 6 17 6 19 7 |
15 5 15 6 17 6 19 7 |
||
2 q t + q t + q t + q t</nowiki></ |
2 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 5], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 5], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 -3 5 4 2 3 4 5 |
|||
-4 + q - -- - q + -- - - + 10 q - 3 q - 9 q + 13 q - q - |
-4 + q - -- - q + -- - - + 10 q - 3 q - 9 q + 13 q - q - |
||
4 2 q |
4 2 q |
||
Line 208: | Line 262: | ||
24 25 |
24 25 |
||
2 q + q</nowiki></ |
2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X9,19,10,18 X15,7,16,6 X17,9,18,8 X19,11,20,10 X11,2,12,3 |
Gauss code | -1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, 6, -9, 3 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 20 6 8 10 |
Conway Notation | [6112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 9}] |
[edit Notes on presentations of 10 5]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 5"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X9,19,10,18 X15,7,16,6 X17,9,18,8 X19,11,20,10 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, 6, -9, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 2 20 6 8 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[6112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 9}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 5"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 5"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 7) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|