10 137: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 137 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-7,6,3,-4,2,5,-10,9,-6,7,-5,8,-9,10,-8/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=137|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-7,6,3,-4,2,5,-10,9,-6,7,-5,8,-9,10,-8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 26: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = [[10_155]], [[K11n37]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_155]], [[K11n37]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 71: | Line 39: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>2 q^4-2 q^3-3 q^2+7 q-1-9 q^{-1} +10 q^{-2} +2 q^{-3} -13 q^{-4} +8 q^{-5} +7 q^{-6} -13 q^{-7} +3 q^{-8} +11 q^{-9} -11 q^{-10} -2 q^{-11} +11 q^{-12} -6 q^{-13} -4 q^{-14} +6 q^{-15} - q^{-16} -2 q^{-17} + q^{-18} </math> | |
|||
coloured_jones_3 = <math>-q^{13}+2 q^{12}+q^{11}-q^{10}-7 q^9+3 q^8+13 q^7-23 q^5-4 q^4+30 q^3+15 q^2-41 q-19+40 q^{-1} +31 q^{-2} -42 q^{-3} -33 q^{-4} +36 q^{-5} +36 q^{-6} -32 q^{-7} -34 q^{-8} +25 q^{-9} +31 q^{-10} -17 q^{-11} -28 q^{-12} +10 q^{-13} +23 q^{-14} - q^{-15} -18 q^{-16} -5 q^{-17} +9 q^{-18} +12 q^{-19} -2 q^{-20} -14 q^{-21} -6 q^{-22} +12 q^{-23} +13 q^{-24} -9 q^{-25} -14 q^{-26} +3 q^{-27} +13 q^{-28} + q^{-29} -9 q^{-30} -3 q^{-31} +5 q^{-32} +2 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} </math> | |
|||
{{Display Coloured Jones|J2=<math>2 q^4-2 q^3-3 q^2+7 q-1-9 q^{-1} +10 q^{-2} +2 q^{-3} -13 q^{-4} +8 q^{-5} +7 q^{-6} -13 q^{-7} +3 q^{-8} +11 q^{-9} -11 q^{-10} -2 q^{-11} +11 q^{-12} -6 q^{-13} -4 q^{-14} +6 q^{-15} - q^{-16} -2 q^{-17} + q^{-18} </math>|J3=<math>-q^{13}+2 q^{12}+q^{11}-q^{10}-7 q^9+3 q^8+13 q^7-23 q^5-4 q^4+30 q^3+15 q^2-41 q-19+40 q^{-1} +31 q^{-2} -42 q^{-3} -33 q^{-4} +36 q^{-5} +36 q^{-6} -32 q^{-7} -34 q^{-8} +25 q^{-9} +31 q^{-10} -17 q^{-11} -28 q^{-12} +10 q^{-13} +23 q^{-14} - q^{-15} -18 q^{-16} -5 q^{-17} +9 q^{-18} +12 q^{-19} -2 q^{-20} -14 q^{-21} -6 q^{-22} +12 q^{-23} +13 q^{-24} -9 q^{-25} -14 q^{-26} +3 q^{-27} +13 q^{-28} + q^{-29} -9 q^{-30} -3 q^{-31} +5 q^{-32} +2 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} </math>|J4=<math>-q^{22}+2 q^{21}+q^{20}-3 q^{19}-q^{18}-4 q^{17}+11 q^{16}+9 q^{15}-10 q^{14}-17 q^{13}-22 q^{12}+36 q^{11}+48 q^{10}-7 q^9-58 q^8-81 q^7+53 q^6+124 q^5+37 q^4-94 q^3-174 q^2+29 q+192+105 q^{-1} -89 q^{-2} -241 q^{-3} -22 q^{-4} +210 q^{-5} +150 q^{-6} -58 q^{-7} -253 q^{-8} -59 q^{-9} +193 q^{-10} +154 q^{-11} -27 q^{-12} -228 q^{-13} -79 q^{-14} +162 q^{-15} +140 q^{-16} +5 q^{-17} -190 q^{-18} -96 q^{-19} +119 q^{-20} +118 q^{-21} +45 q^{-22} -136 q^{-23} -111 q^{-24} +62 q^{-25} +82 q^{-26} +77 q^{-27} -65 q^{-28} -99 q^{-29} +11 q^{-30} +24 q^{-31} +74 q^{-32} -53 q^{-34} -4 q^{-35} -28 q^{-36} +32 q^{-37} +21 q^{-38} -5 q^{-39} +18 q^{-40} -38 q^{-41} -7 q^{-42} +2 q^{-43} +6 q^{-44} +35 q^{-45} -14 q^{-46} -11 q^{-47} -13 q^{-48} -5 q^{-49} +23 q^{-50} + q^{-51} -7 q^{-53} -7 q^{-54} +6 q^{-55} + q^{-56} +2 q^{-57} - q^{-58} -2 q^{-59} + q^{-60} </math>|J5=<math>-q^{30}-q^{29}+4 q^{28}+4 q^{27}-q^{26}-6 q^{25}-13 q^{24}-10 q^{23}+20 q^{22}+36 q^{21}+23 q^{20}-23 q^{19}-73 q^{18}-75 q^{17}+18 q^{16}+133 q^{15}+150 q^{14}+20 q^{13}-184 q^{12}-269 q^{11}-100 q^{10}+223 q^9+402 q^8+220 q^7-218 q^6-534 q^5-365 q^4+176 q^3+619 q^2+524 q-95-679 q^{-1} -640 q^{-2} +3 q^{-3} +669 q^{-4} +733 q^{-5} +94 q^{-6} -652 q^{-7} -769 q^{-8} -158 q^{-9} +595 q^{-10} +777 q^{-11} +212 q^{-12} -550 q^{-13} -761 q^{-14} -234 q^{-15} +496 q^{-16} +729 q^{-17} +259 q^{-18} -445 q^{-19} -699 q^{-20} -276 q^{-21} +386 q^{-22} +660 q^{-23} +308 q^{-24} -316 q^{-25} -622 q^{-26} -344 q^{-27} +233 q^{-28} +567 q^{-29} +385 q^{-30} -131 q^{-31} -503 q^{-32} -415 q^{-33} +23 q^{-34} +412 q^{-35} +428 q^{-36} +88 q^{-37} -302 q^{-38} -415 q^{-39} -177 q^{-40} +176 q^{-41} +361 q^{-42} +243 q^{-43} -54 q^{-44} -279 q^{-45} -259 q^{-46} -47 q^{-47} +170 q^{-48} +234 q^{-49} +113 q^{-50} -70 q^{-51} -171 q^{-52} -129 q^{-53} -8 q^{-54} +89 q^{-55} +108 q^{-56} +50 q^{-57} -24 q^{-58} -59 q^{-59} -49 q^{-60} -20 q^{-61} +10 q^{-62} +27 q^{-63} +29 q^{-64} +22 q^{-65} + q^{-66} -16 q^{-67} -28 q^{-68} -25 q^{-69} - q^{-70} +23 q^{-71} +26 q^{-72} +12 q^{-73} -5 q^{-74} -21 q^{-75} -18 q^{-76} - q^{-77} +12 q^{-78} +10 q^{-79} +5 q^{-80} -9 q^{-82} -5 q^{-83} +2 q^{-84} +2 q^{-85} + q^{-86} +2 q^{-87} - q^{-88} -2 q^{-89} + q^{-90} </math>|J6=<math>q^{47}-2 q^{46}-q^{45}+2 q^{44}+q^{43}+q^{42}+6 q^{40}-11 q^{39}-14 q^{38}+2 q^{37}+10 q^{36}+19 q^{35}+21 q^{34}+28 q^{33}-45 q^{32}-84 q^{31}-54 q^{30}+2 q^{29}+88 q^{28}+161 q^{27}+187 q^{26}-51 q^{25}-274 q^{24}-341 q^{23}-222 q^{22}+104 q^{21}+495 q^{20}+730 q^{19}+270 q^{18}-401 q^{17}-916 q^{16}-952 q^{15}-318 q^{14}+746 q^{13}+1625 q^{12}+1181 q^{11}-19 q^{10}-1366 q^9-2008 q^8-1358 q^7+433 q^6+2310 q^5+2334 q^4+940 q^3-1207 q^2-2730 q-2508-396 q^{-1} +2325 q^{-2} +3042 q^{-3} +1903 q^{-4} -580 q^{-5} -2772 q^{-6} -3140 q^{-7} -1158 q^{-8} +1899 q^{-9} +3101 q^{-10} +2364 q^{-11} -28 q^{-12} -2441 q^{-13} -3187 q^{-14} -1493 q^{-15} +1503 q^{-16} +2850 q^{-17} +2379 q^{-18} +223 q^{-19} -2118 q^{-20} -2984 q^{-21} -1537 q^{-22} +1251 q^{-23} +2574 q^{-24} +2265 q^{-25} +360 q^{-26} -1835 q^{-27} -2759 q^{-28} -1574 q^{-29} +955 q^{-30} +2268 q^{-31} +2192 q^{-32} +615 q^{-33} -1423 q^{-34} -2495 q^{-35} -1720 q^{-36} +450 q^{-37} +1799 q^{-38} +2109 q^{-39} +1029 q^{-40} -769 q^{-41} -2050 q^{-42} -1864 q^{-43} -244 q^{-44} +1065 q^{-45} +1826 q^{-46} +1422 q^{-47} +73 q^{-48} -1293 q^{-49} -1748 q^{-50} -885 q^{-51} +131 q^{-52} +1167 q^{-53} +1470 q^{-54} +810 q^{-55} -300 q^{-56} -1165 q^{-57} -1093 q^{-58} -661 q^{-59} +238 q^{-60} +966 q^{-61} +1025 q^{-62} +519 q^{-63} -286 q^{-64} -684 q^{-65} -867 q^{-66} -478 q^{-67} +169 q^{-68} +598 q^{-69} +709 q^{-70} +334 q^{-71} -17 q^{-72} -456 q^{-73} -556 q^{-74} -320 q^{-75} -2 q^{-76} +342 q^{-77} +337 q^{-78} +305 q^{-79} +28 q^{-80} -192 q^{-81} -254 q^{-82} -217 q^{-83} -4 q^{-84} +32 q^{-85} +170 q^{-86} +132 q^{-87} +54 q^{-88} -16 q^{-89} -80 q^{-90} -23 q^{-91} -95 q^{-92} -11 q^{-93} +8 q^{-94} +30 q^{-95} +33 q^{-96} +26 q^{-97} +63 q^{-98} -34 q^{-99} -19 q^{-100} -38 q^{-101} -25 q^{-102} -18 q^{-103} +6 q^{-104} +57 q^{-105} +8 q^{-106} +14 q^{-107} -8 q^{-108} -13 q^{-109} -25 q^{-110} -13 q^{-111} +17 q^{-112} +2 q^{-113} +11 q^{-114} +4 q^{-115} +3 q^{-116} -9 q^{-117} -7 q^{-118} +4 q^{-119} -2 q^{-120} +2 q^{-121} + q^{-122} +2 q^{-123} - q^{-124} -2 q^{-125} + q^{-126} </math>|J7=<math>q^{63}-2 q^{62}-q^{61}+2 q^{60}+2 q^{59}+2 q^{58}-4 q^{57}-2 q^{56}+q^{55}-7 q^{54}-4 q^{53}+9 q^{52}+18 q^{51}+24 q^{50}-7 q^{49}-26 q^{48}-32 q^{47}-57 q^{46}-31 q^{45}+32 q^{44}+113 q^{43}+171 q^{42}+96 q^{41}-46 q^{40}-196 q^{39}-361 q^{38}-327 q^{37}-77 q^{36}+314 q^{35}+736 q^{34}+766 q^{33}+386 q^{32}-325 q^{31}-1177 q^{30}-1526 q^{29}-1104 q^{28}+54 q^{27}+1636 q^{26}+2583 q^{25}+2298 q^{24}+690 q^{23}-1856 q^{22}-3765 q^{21}-3981 q^{20}-2063 q^{19}+1569 q^{18}+4835 q^{17}+5982 q^{16}+4054 q^{15}-635 q^{14}-5495 q^{13}-7943 q^{12}-6433 q^{11}-970 q^{10}+5444 q^9+9541 q^8+8929 q^7+3064 q^6-4769 q^5-10520 q^4-11014 q^3-5274 q^2+3459 q+10717+12593 q^{-1} +7327 q^{-2} -1972 q^{-3} -10356 q^{-4} -13394 q^{-5} -8824 q^{-6} +461 q^{-7} +9547 q^{-8} +13611 q^{-9} +9820 q^{-10} +719 q^{-11} -8687 q^{-12} -13368 q^{-13} -10222 q^{-14} -1525 q^{-15} +7866 q^{-16} +12914 q^{-17} +10277 q^{-18} +1973 q^{-19} -7261 q^{-20} -12424 q^{-21} -10106 q^{-22} -2157 q^{-23} +6826 q^{-24} +11968 q^{-25} +9874 q^{-26} +2241 q^{-27} -6488 q^{-28} -11579 q^{-29} -9683 q^{-30} -2335 q^{-31} +6162 q^{-32} +11209 q^{-33} +9546 q^{-34} +2537 q^{-35} -5713 q^{-36} -10806 q^{-37} -9500 q^{-38} -2896 q^{-39} +5114 q^{-40} +10301 q^{-41} +9466 q^{-42} +3436 q^{-43} -4273 q^{-44} -9642 q^{-45} -9446 q^{-46} -4111 q^{-47} +3213 q^{-48} +8744 q^{-49} +9326 q^{-50} +4896 q^{-51} -1899 q^{-52} -7614 q^{-53} -9036 q^{-54} -5653 q^{-55} +418 q^{-56} +6158 q^{-57} +8457 q^{-58} +6312 q^{-59} +1147 q^{-60} -4450 q^{-61} -7524 q^{-62} -6644 q^{-63} -2632 q^{-64} +2511 q^{-65} +6174 q^{-66} +6557 q^{-67} +3871 q^{-68} -556 q^{-69} -4471 q^{-70} -5923 q^{-71} -4609 q^{-72} -1234 q^{-73} +2520 q^{-74} +4757 q^{-75} +4746 q^{-76} +2606 q^{-77} -626 q^{-78} -3184 q^{-79} -4198 q^{-80} -3323 q^{-81} -979 q^{-82} +1440 q^{-83} +3101 q^{-84} +3336 q^{-85} +2023 q^{-86} +110 q^{-87} -1703 q^{-88} -2692 q^{-89} -2345 q^{-90} -1223 q^{-91} +310 q^{-92} +1662 q^{-93} +2053 q^{-94} +1709 q^{-95} +695 q^{-96} -559 q^{-97} -1304 q^{-98} -1587 q^{-99} -1215 q^{-100} -304 q^{-101} +472 q^{-102} +1075 q^{-103} +1200 q^{-104} +731 q^{-105} +196 q^{-106} -441 q^{-107} -835 q^{-108} -750 q^{-109} -535 q^{-110} -65 q^{-111} +390 q^{-112} +508 q^{-113} +530 q^{-114} +296 q^{-115} -32 q^{-116} -172 q^{-117} -350 q^{-118} -318 q^{-119} -126 q^{-120} -29 q^{-121} +132 q^{-122} +166 q^{-123} +109 q^{-124} +135 q^{-125} +28 q^{-126} -53 q^{-127} -40 q^{-128} -93 q^{-129} -50 q^{-130} -37 q^{-131} -56 q^{-132} +34 q^{-133} +49 q^{-134} +45 q^{-135} +65 q^{-136} +14 q^{-137} +6 q^{-138} -13 q^{-139} -69 q^{-140} -37 q^{-141} -22 q^{-142} -2 q^{-143} +37 q^{-144} +20 q^{-145} +24 q^{-146} +24 q^{-147} -10 q^{-148} -16 q^{-149} -21 q^{-150} -17 q^{-151} +8 q^{-152} +4 q^{-154} +13 q^{-155} +4 q^{-156} +2 q^{-157} -6 q^{-158} -7 q^{-159} +2 q^{-160} -2 q^{-162} +2 q^{-163} + q^{-164} +2 q^{-165} - q^{-166} -2 q^{-167} + q^{-168} </math>}} |
|||
coloured_jones_4 = <math>-q^{22}+2 q^{21}+q^{20}-3 q^{19}-q^{18}-4 q^{17}+11 q^{16}+9 q^{15}-10 q^{14}-17 q^{13}-22 q^{12}+36 q^{11}+48 q^{10}-7 q^9-58 q^8-81 q^7+53 q^6+124 q^5+37 q^4-94 q^3-174 q^2+29 q+192+105 q^{-1} -89 q^{-2} -241 q^{-3} -22 q^{-4} +210 q^{-5} +150 q^{-6} -58 q^{-7} -253 q^{-8} -59 q^{-9} +193 q^{-10} +154 q^{-11} -27 q^{-12} -228 q^{-13} -79 q^{-14} +162 q^{-15} +140 q^{-16} +5 q^{-17} -190 q^{-18} -96 q^{-19} +119 q^{-20} +118 q^{-21} +45 q^{-22} -136 q^{-23} -111 q^{-24} +62 q^{-25} +82 q^{-26} +77 q^{-27} -65 q^{-28} -99 q^{-29} +11 q^{-30} +24 q^{-31} +74 q^{-32} -53 q^{-34} -4 q^{-35} -28 q^{-36} +32 q^{-37} +21 q^{-38} -5 q^{-39} +18 q^{-40} -38 q^{-41} -7 q^{-42} +2 q^{-43} +6 q^{-44} +35 q^{-45} -14 q^{-46} -11 q^{-47} -13 q^{-48} -5 q^{-49} +23 q^{-50} + q^{-51} -7 q^{-53} -7 q^{-54} +6 q^{-55} + q^{-56} +2 q^{-57} - q^{-58} -2 q^{-59} + q^{-60} </math> | |
|||
coloured_jones_5 = <math>-q^{30}-q^{29}+4 q^{28}+4 q^{27}-q^{26}-6 q^{25}-13 q^{24}-10 q^{23}+20 q^{22}+36 q^{21}+23 q^{20}-23 q^{19}-73 q^{18}-75 q^{17}+18 q^{16}+133 q^{15}+150 q^{14}+20 q^{13}-184 q^{12}-269 q^{11}-100 q^{10}+223 q^9+402 q^8+220 q^7-218 q^6-534 q^5-365 q^4+176 q^3+619 q^2+524 q-95-679 q^{-1} -640 q^{-2} +3 q^{-3} +669 q^{-4} +733 q^{-5} +94 q^{-6} -652 q^{-7} -769 q^{-8} -158 q^{-9} +595 q^{-10} +777 q^{-11} +212 q^{-12} -550 q^{-13} -761 q^{-14} -234 q^{-15} +496 q^{-16} +729 q^{-17} +259 q^{-18} -445 q^{-19} -699 q^{-20} -276 q^{-21} +386 q^{-22} +660 q^{-23} +308 q^{-24} -316 q^{-25} -622 q^{-26} -344 q^{-27} +233 q^{-28} +567 q^{-29} +385 q^{-30} -131 q^{-31} -503 q^{-32} -415 q^{-33} +23 q^{-34} +412 q^{-35} +428 q^{-36} +88 q^{-37} -302 q^{-38} -415 q^{-39} -177 q^{-40} +176 q^{-41} +361 q^{-42} +243 q^{-43} -54 q^{-44} -279 q^{-45} -259 q^{-46} -47 q^{-47} +170 q^{-48} +234 q^{-49} +113 q^{-50} -70 q^{-51} -171 q^{-52} -129 q^{-53} -8 q^{-54} +89 q^{-55} +108 q^{-56} +50 q^{-57} -24 q^{-58} -59 q^{-59} -49 q^{-60} -20 q^{-61} +10 q^{-62} +27 q^{-63} +29 q^{-64} +22 q^{-65} + q^{-66} -16 q^{-67} -28 q^{-68} -25 q^{-69} - q^{-70} +23 q^{-71} +26 q^{-72} +12 q^{-73} -5 q^{-74} -21 q^{-75} -18 q^{-76} - q^{-77} +12 q^{-78} +10 q^{-79} +5 q^{-80} -9 q^{-82} -5 q^{-83} +2 q^{-84} +2 q^{-85} + q^{-86} +2 q^{-87} - q^{-88} -2 q^{-89} + q^{-90} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{47}-2 q^{46}-q^{45}+2 q^{44}+q^{43}+q^{42}+6 q^{40}-11 q^{39}-14 q^{38}+2 q^{37}+10 q^{36}+19 q^{35}+21 q^{34}+28 q^{33}-45 q^{32}-84 q^{31}-54 q^{30}+2 q^{29}+88 q^{28}+161 q^{27}+187 q^{26}-51 q^{25}-274 q^{24}-341 q^{23}-222 q^{22}+104 q^{21}+495 q^{20}+730 q^{19}+270 q^{18}-401 q^{17}-916 q^{16}-952 q^{15}-318 q^{14}+746 q^{13}+1625 q^{12}+1181 q^{11}-19 q^{10}-1366 q^9-2008 q^8-1358 q^7+433 q^6+2310 q^5+2334 q^4+940 q^3-1207 q^2-2730 q-2508-396 q^{-1} +2325 q^{-2} +3042 q^{-3} +1903 q^{-4} -580 q^{-5} -2772 q^{-6} -3140 q^{-7} -1158 q^{-8} +1899 q^{-9} +3101 q^{-10} +2364 q^{-11} -28 q^{-12} -2441 q^{-13} -3187 q^{-14} -1493 q^{-15} +1503 q^{-16} +2850 q^{-17} +2379 q^{-18} +223 q^{-19} -2118 q^{-20} -2984 q^{-21} -1537 q^{-22} +1251 q^{-23} +2574 q^{-24} +2265 q^{-25} +360 q^{-26} -1835 q^{-27} -2759 q^{-28} -1574 q^{-29} +955 q^{-30} +2268 q^{-31} +2192 q^{-32} +615 q^{-33} -1423 q^{-34} -2495 q^{-35} -1720 q^{-36} +450 q^{-37} +1799 q^{-38} +2109 q^{-39} +1029 q^{-40} -769 q^{-41} -2050 q^{-42} -1864 q^{-43} -244 q^{-44} +1065 q^{-45} +1826 q^{-46} +1422 q^{-47} +73 q^{-48} -1293 q^{-49} -1748 q^{-50} -885 q^{-51} +131 q^{-52} +1167 q^{-53} +1470 q^{-54} +810 q^{-55} -300 q^{-56} -1165 q^{-57} -1093 q^{-58} -661 q^{-59} +238 q^{-60} +966 q^{-61} +1025 q^{-62} +519 q^{-63} -286 q^{-64} -684 q^{-65} -867 q^{-66} -478 q^{-67} +169 q^{-68} +598 q^{-69} +709 q^{-70} +334 q^{-71} -17 q^{-72} -456 q^{-73} -556 q^{-74} -320 q^{-75} -2 q^{-76} +342 q^{-77} +337 q^{-78} +305 q^{-79} +28 q^{-80} -192 q^{-81} -254 q^{-82} -217 q^{-83} -4 q^{-84} +32 q^{-85} +170 q^{-86} +132 q^{-87} +54 q^{-88} -16 q^{-89} -80 q^{-90} -23 q^{-91} -95 q^{-92} -11 q^{-93} +8 q^{-94} +30 q^{-95} +33 q^{-96} +26 q^{-97} +63 q^{-98} -34 q^{-99} -19 q^{-100} -38 q^{-101} -25 q^{-102} -18 q^{-103} +6 q^{-104} +57 q^{-105} +8 q^{-106} +14 q^{-107} -8 q^{-108} -13 q^{-109} -25 q^{-110} -13 q^{-111} +17 q^{-112} +2 q^{-113} +11 q^{-114} +4 q^{-115} +3 q^{-116} -9 q^{-117} -7 q^{-118} +4 q^{-119} -2 q^{-120} +2 q^{-121} + q^{-122} +2 q^{-123} - q^{-124} -2 q^{-125} + q^{-126} </math> | |
|||
coloured_jones_7 = <math>q^{63}-2 q^{62}-q^{61}+2 q^{60}+2 q^{59}+2 q^{58}-4 q^{57}-2 q^{56}+q^{55}-7 q^{54}-4 q^{53}+9 q^{52}+18 q^{51}+24 q^{50}-7 q^{49}-26 q^{48}-32 q^{47}-57 q^{46}-31 q^{45}+32 q^{44}+113 q^{43}+171 q^{42}+96 q^{41}-46 q^{40}-196 q^{39}-361 q^{38}-327 q^{37}-77 q^{36}+314 q^{35}+736 q^{34}+766 q^{33}+386 q^{32}-325 q^{31}-1177 q^{30}-1526 q^{29}-1104 q^{28}+54 q^{27}+1636 q^{26}+2583 q^{25}+2298 q^{24}+690 q^{23}-1856 q^{22}-3765 q^{21}-3981 q^{20}-2063 q^{19}+1569 q^{18}+4835 q^{17}+5982 q^{16}+4054 q^{15}-635 q^{14}-5495 q^{13}-7943 q^{12}-6433 q^{11}-970 q^{10}+5444 q^9+9541 q^8+8929 q^7+3064 q^6-4769 q^5-10520 q^4-11014 q^3-5274 q^2+3459 q+10717+12593 q^{-1} +7327 q^{-2} -1972 q^{-3} -10356 q^{-4} -13394 q^{-5} -8824 q^{-6} +461 q^{-7} +9547 q^{-8} +13611 q^{-9} +9820 q^{-10} +719 q^{-11} -8687 q^{-12} -13368 q^{-13} -10222 q^{-14} -1525 q^{-15} +7866 q^{-16} +12914 q^{-17} +10277 q^{-18} +1973 q^{-19} -7261 q^{-20} -12424 q^{-21} -10106 q^{-22} -2157 q^{-23} +6826 q^{-24} +11968 q^{-25} +9874 q^{-26} +2241 q^{-27} -6488 q^{-28} -11579 q^{-29} -9683 q^{-30} -2335 q^{-31} +6162 q^{-32} +11209 q^{-33} +9546 q^{-34} +2537 q^{-35} -5713 q^{-36} -10806 q^{-37} -9500 q^{-38} -2896 q^{-39} +5114 q^{-40} +10301 q^{-41} +9466 q^{-42} +3436 q^{-43} -4273 q^{-44} -9642 q^{-45} -9446 q^{-46} -4111 q^{-47} +3213 q^{-48} +8744 q^{-49} +9326 q^{-50} +4896 q^{-51} -1899 q^{-52} -7614 q^{-53} -9036 q^{-54} -5653 q^{-55} +418 q^{-56} +6158 q^{-57} +8457 q^{-58} +6312 q^{-59} +1147 q^{-60} -4450 q^{-61} -7524 q^{-62} -6644 q^{-63} -2632 q^{-64} +2511 q^{-65} +6174 q^{-66} +6557 q^{-67} +3871 q^{-68} -556 q^{-69} -4471 q^{-70} -5923 q^{-71} -4609 q^{-72} -1234 q^{-73} +2520 q^{-74} +4757 q^{-75} +4746 q^{-76} +2606 q^{-77} -626 q^{-78} -3184 q^{-79} -4198 q^{-80} -3323 q^{-81} -979 q^{-82} +1440 q^{-83} +3101 q^{-84} +3336 q^{-85} +2023 q^{-86} +110 q^{-87} -1703 q^{-88} -2692 q^{-89} -2345 q^{-90} -1223 q^{-91} +310 q^{-92} +1662 q^{-93} +2053 q^{-94} +1709 q^{-95} +695 q^{-96} -559 q^{-97} -1304 q^{-98} -1587 q^{-99} -1215 q^{-100} -304 q^{-101} +472 q^{-102} +1075 q^{-103} +1200 q^{-104} +731 q^{-105} +196 q^{-106} -441 q^{-107} -835 q^{-108} -750 q^{-109} -535 q^{-110} -65 q^{-111} +390 q^{-112} +508 q^{-113} +530 q^{-114} +296 q^{-115} -32 q^{-116} -172 q^{-117} -350 q^{-118} -318 q^{-119} -126 q^{-120} -29 q^{-121} +132 q^{-122} +166 q^{-123} +109 q^{-124} +135 q^{-125} +28 q^{-126} -53 q^{-127} -40 q^{-128} -93 q^{-129} -50 q^{-130} -37 q^{-131} -56 q^{-132} +34 q^{-133} +49 q^{-134} +45 q^{-135} +65 q^{-136} +14 q^{-137} +6 q^{-138} -13 q^{-139} -69 q^{-140} -37 q^{-141} -22 q^{-142} -2 q^{-143} +37 q^{-144} +20 q^{-145} +24 q^{-146} +24 q^{-147} -10 q^{-148} -16 q^{-149} -21 q^{-150} -17 q^{-151} +8 q^{-152} +4 q^{-154} +13 q^{-155} +4 q^{-156} +2 q^{-157} -6 q^{-158} -7 q^{-159} +2 q^{-160} -2 q^{-162} +2 q^{-163} + q^{-164} +2 q^{-165} - q^{-166} -2 q^{-167} + q^{-168} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 137]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 137]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], |
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], |
||
X[20, 18, 1, 17], X[18, 13, 19, 14], X[12, 19, 13, 20]]</nowiki></ |
X[20, 18, 1, 17], X[18, 13, 19, 14], X[12, 19, 13, 20]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 137]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 137]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -10, 9, -6, 7, -5, 8, |
|||
-9, 10, -8]</nowiki></ |
-9, 10, -8]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 137]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 137]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 137]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, -14, 2, -16, -18, -6, -20, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 137]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, 2, -1, 2, -3, -2, -2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 137]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_137_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 137]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 137]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 137]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 137]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_137_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 137]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 137]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 6 2 |
|||
11 + t - - - 6 t + t |
11 + t - - - 6 t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 137]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 137]][z]</nowiki></code></td></tr> |
|||
1 - 2 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - 2 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 137]], KnotSignature[Knot[10, 137]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 3 4 4 4 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 137]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 137]], KnotSignature[Knot[10, 137]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{25, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 137]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 3 4 4 4 2 |
|||
4 + q - -- + -- - -- + -- - - - 2 q + q |
4 + q - -- + -- - -- + -- - - - 2 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 137]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 137], Knot[10, 155], Knot[11, NonAlternating, 37]}</nowiki></code></td></tr> |
|||
q + q - q - q - q + q + q + q - q + q + q</nowiki></pre></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 137]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 137]][q]</nowiki></code></td></tr> |
|||
-1 + a + 2 a - 2 a + a - 2 z + 2 a z - 2 a z + a z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 -16 -12 -10 -8 -4 2 4 6 8 |
|||
q + q - q - q - q + q + q + q - q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 137]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 4 6 2 2 2 4 2 2 4 |
|||
-1 + a + 2 a - 2 a + a - 2 z + 2 a z - 2 a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 137]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 4 6 z 3 5 2 z |
-2 2 4 6 z 3 5 2 z |
||
-1 - a - 2 a - 2 a - a - - - 3 a z - 5 a z - 3 a z + 4 z + -- + |
-1 - a - 2 a - 2 a - a - - - 3 a z - 5 a z - 3 a z + 4 z + -- + |
||
Line 164: | Line 206: | ||
4 8 |
4 8 |
||
a z</nowiki></ |
a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 137]], Vassiliev[3][Knot[10, 137]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 137]], Vassiliev[3][Knot[10, 137]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 137]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 137]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 2 1 2 2 |
|||
- + 3 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
- + 3 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 178: | Line 228: | ||
----- + ----- + ---- + --- + q t + q t + q t |
----- + ----- + ---- + --- + q t + q t + q t |
||
5 2 3 2 3 q t |
5 2 3 2 3 q t |
||
q t q t q t</nowiki></ |
q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 137], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 137], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 2 -16 6 4 6 11 2 11 11 3 |
|||
-1 + q - --- - q + --- - --- - --- + --- - --- - --- + -- + -- - |
-1 + q - --- - q + --- - --- - --- + --- - --- - --- + -- + -- - |
||
17 15 14 13 12 11 10 9 8 |
17 15 14 13 12 11 10 9 8 |
||
Line 189: | Line 243: | ||
-- + -- + -- - -- + -- + -- - - + 7 q - 3 q - 2 q + 2 q |
-- + -- + -- - -- + -- + -- - - + 7 q - 3 q - 2 q + 2 q |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></ |
q q q q q q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:05, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 137's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss code | -1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8 |
Dowker-Thistlethwaite code | 4 8 10 -14 2 -16 -18 -6 -20 -12 |
Conway Notation | [22,211,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{12, 2}, {1, 10}, {11, 6}, {10, 12}, {9, 3}, {2, 8}, {7, 9}, {8, 11}, {5, 1}, {6, 4}, {3, 5}, {4, 7}] |
[edit Notes on presentations of 10 137]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 137"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 -14 2 -16 -18 -6 -20 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,211,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {11, 6}, {10, 12}, {9, 3}, {2, 8}, {7, 9}, {8, 11}, {5, 1}, {6, 4}, {3, 5}, {4, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 137"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_155, K11n37,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 137"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_155, K11n37,} |
Vassiliev invariants
V2 and V3: | (-2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 137. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|