9 42: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- provide an anchor so we can return to the top of the page -->
k = 42 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-7,6,3,-4,2,5,-9,8,-6,7,-5,9,-8/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=42|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-7,6,3,-4,2,5,-9,8,-6,7,-5,9,-8/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 9 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 9, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>&chi;</td></tr>
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>&chi;</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
Line 68: Line 36:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{10}-q^9-q^8+2 q^7-q^6-q^5+2 q^4-q^3+q-1+ q^{-1} - q^{-3} +2 q^{-4} - q^{-5} - q^{-6} +2 q^{-7} - q^{-8} - q^{-9} + q^{-10} </math> |

coloured_jones_3 = <math>q^{19}-2 q^{17}-2 q^{16}+4 q^{15}+2 q^{14}-4 q^{13}-3 q^{12}+5 q^{11}+4 q^{10}-5 q^9-4 q^8+5 q^7+3 q^6-5 q^5-3 q^4+5 q^3+3 q^2-4 q-3+4 q^{-1} +3 q^{-2} -3 q^{-3} -3 q^{-4} +3 q^{-5} +2 q^{-6} -2 q^{-7} -2 q^{-8} +2 q^{-9} + q^{-10} -2 q^{-11} +2 q^{-13} -2 q^{-15} +2 q^{-17} - q^{-19} - q^{-20} + q^{-21} </math> |
{{Display Coloured Jones|J2=<math>q^{10}-q^9-q^8+2 q^7-q^6-q^5+2 q^4-q^3+q-1+ q^{-1} - q^{-3} +2 q^{-4} - q^{-5} - q^{-6} +2 q^{-7} - q^{-8} - q^{-9} + q^{-10} </math>|J3=<math>q^{19}-2 q^{17}-2 q^{16}+4 q^{15}+2 q^{14}-4 q^{13}-3 q^{12}+5 q^{11}+4 q^{10}-5 q^9-4 q^8+5 q^7+3 q^6-5 q^5-3 q^4+5 q^3+3 q^2-4 q-3+4 q^{-1} +3 q^{-2} -3 q^{-3} -3 q^{-4} +3 q^{-5} +2 q^{-6} -2 q^{-7} -2 q^{-8} +2 q^{-9} + q^{-10} -2 q^{-11} +2 q^{-13} -2 q^{-15} +2 q^{-17} - q^{-19} - q^{-20} + q^{-21} </math>|J4=<math>q^{32}-q^{31}-q^{29}-q^{28}+3 q^{27}-q^{26}+3 q^{25}-3 q^{24}-4 q^{23}+4 q^{22}-q^{21}+6 q^{20}-3 q^{19}-5 q^{18}+3 q^{17}-3 q^{16}+7 q^{15}-2 q^{14}-5 q^{13}+3 q^{12}-3 q^{11}+6 q^{10}-q^9-4 q^8+2 q^7-3 q^6+5 q^5+q^4-3 q^3+q^2-4 q+4+3 q^{-1} -2 q^{-2} - q^{-3} -5 q^{-4} +3 q^{-5} +5 q^{-6} -2 q^{-8} -6 q^{-9} + q^{-10} +6 q^{-11} +2 q^{-12} -2 q^{-13} -5 q^{-14} - q^{-15} +5 q^{-16} +2 q^{-17} - q^{-18} -3 q^{-19} -2 q^{-20} +4 q^{-21} - q^{-23} - q^{-24} - q^{-25} +4 q^{-26} - q^{-27} - q^{-28} - q^{-29} - q^{-30} +3 q^{-31} - q^{-34} - q^{-35} + q^{-36} </math>|J5=<math>q^{47}-q^{45}-2 q^{44}-q^{43}+4 q^{41}+5 q^{40}-5 q^{38}-7 q^{37}-3 q^{36}+5 q^{35}+11 q^{34}+5 q^{33}-6 q^{32}-12 q^{31}-7 q^{30}+5 q^{29}+13 q^{28}+8 q^{27}-5 q^{26}-13 q^{25}-8 q^{24}+5 q^{23}+13 q^{22}+8 q^{21}-5 q^{20}-13 q^{19}-8 q^{18}+6 q^{17}+13 q^{16}+7 q^{15}-6 q^{14}-13 q^{13}-7 q^{12}+7 q^{11}+12 q^{10}+6 q^9-6 q^8-11 q^7-6 q^6+6 q^5+10 q^4+5 q^3-4 q^2-9 q-5+4 q^{-1} +7 q^{-2} +4 q^{-3} -2 q^{-4} -6 q^{-5} -4 q^{-6} +3 q^{-7} +4 q^{-8} +2 q^{-9} - q^{-10} -3 q^{-11} - q^{-12} +2 q^{-13} +2 q^{-14} - q^{-15} -3 q^{-16} - q^{-17} +2 q^{-18} +4 q^{-19} +2 q^{-20} -3 q^{-21} -6 q^{-22} -2 q^{-23} +3 q^{-24} +5 q^{-25} +4 q^{-26} -2 q^{-27} -6 q^{-28} -3 q^{-29} + q^{-30} +4 q^{-31} +4 q^{-32} -4 q^{-34} -2 q^{-35} +2 q^{-37} +2 q^{-38} - q^{-39} -2 q^{-40} - q^{-41} + q^{-42} +2 q^{-43} + q^{-44} - q^{-45} - q^{-46} -2 q^{-47} +2 q^{-49} + q^{-50} - q^{-53} - q^{-54} + q^{-55} </math>|J6=<math>q^{66}-q^{65}-q^{62}-q^{61}-q^{60}+3 q^{59}+q^{58}+4 q^{57}+q^{56}-2 q^{55}-7 q^{54}-6 q^{53}+2 q^{51}+14 q^{50}+7 q^{49}+2 q^{48}-13 q^{47}-14 q^{46}-7 q^{45}-q^{44}+20 q^{43}+13 q^{42}+9 q^{41}-12 q^{40}-16 q^{39}-13 q^{38}-5 q^{37}+20 q^{36}+14 q^{35}+13 q^{34}-11 q^{33}-14 q^{32}-15 q^{31}-7 q^{30}+19 q^{29}+13 q^{28}+14 q^{27}-11 q^{26}-14 q^{25}-15 q^{24}-6 q^{23}+19 q^{22}+13 q^{21}+14 q^{20}-10 q^{19}-14 q^{18}-15 q^{17}-5 q^{16}+17 q^{15}+11 q^{14}+14 q^{13}-8 q^{12}-12 q^{11}-15 q^{10}-5 q^9+13 q^8+9 q^7+16 q^6-5 q^5-9 q^4-16 q^3-6 q^2+8 q+7+18 q^{-1} -5 q^{-3} -17 q^{-4} -8 q^{-5} +2 q^{-6} +4 q^{-7} +19 q^{-8} +5 q^{-9} -16 q^{-11} -8 q^{-12} -4 q^{-13} - q^{-14} +17 q^{-15} +8 q^{-16} +4 q^{-17} -12 q^{-18} -5 q^{-19} -7 q^{-20} -5 q^{-21} +12 q^{-22} +7 q^{-23} +5 q^{-24} -8 q^{-25} -5 q^{-27} -5 q^{-28} +8 q^{-29} +3 q^{-30} + q^{-31} -7 q^{-32} +2 q^{-33} - q^{-34} - q^{-35} +8 q^{-36} +2 q^{-37} -3 q^{-38} -8 q^{-39} - q^{-40} - q^{-41} + q^{-42} +9 q^{-43} +4 q^{-44} -2 q^{-45} -6 q^{-46} -3 q^{-47} -3 q^{-48} - q^{-49} +8 q^{-50} +3 q^{-51} -2 q^{-53} -2 q^{-54} -2 q^{-55} -2 q^{-56} +6 q^{-57} - q^{-59} - q^{-60} - q^{-61} - q^{-62} - q^{-63} +5 q^{-64} - q^{-67} - q^{-68} -2 q^{-69} - q^{-70} +3 q^{-71} + q^{-73} - q^{-76} - q^{-77} + q^{-78} </math>|J7=<math>q^{87}-q^{85}-q^{84}-q^{83}-q^{82}+q^{80}+5 q^{79}+4 q^{78}+q^{77}-q^{76}-5 q^{75}-7 q^{74}-9 q^{73}-4 q^{72}+7 q^{71}+15 q^{70}+11 q^{69}+9 q^{68}-q^{67}-15 q^{66}-22 q^{65}-20 q^{64}+q^{63}+18 q^{62}+23 q^{61}+24 q^{60}+8 q^{59}-15 q^{58}-27 q^{57}-30 q^{56}-10 q^{55}+15 q^{54}+25 q^{53}+30 q^{52}+13 q^{51}-12 q^{50}-24 q^{49}-31 q^{48}-13 q^{47}+12 q^{46}+23 q^{45}+29 q^{44}+13 q^{43}-13 q^{42}-22 q^{41}-29 q^{40}-12 q^{39}+13 q^{38}+22 q^{37}+29 q^{36}+12 q^{35}-13 q^{34}-23 q^{33}-29 q^{32}-11 q^{31}+14 q^{30}+23 q^{29}+28 q^{28}+11 q^{27}-14 q^{26}-24 q^{25}-27 q^{24}-9 q^{23}+15 q^{22}+22 q^{21}+25 q^{20}+9 q^{19}-14 q^{18}-22 q^{17}-24 q^{16}-7 q^{15}+13 q^{14}+19 q^{13}+21 q^{12}+8 q^{11}-11 q^{10}-17 q^9-19 q^8-7 q^7+9 q^6+13 q^5+16 q^4+9 q^3-6 q^2-10 q-14-7 q^{-1} +3 q^{-2} +5 q^{-3} +10 q^{-4} +9 q^{-5} -3 q^{-7} -6 q^{-8} -6 q^{-9} -2 q^{-10} -3 q^{-11} + q^{-12} +6 q^{-13} +3 q^{-14} +5 q^{-15} +3 q^{-16} - q^{-17} -2 q^{-18} -8 q^{-19} -9 q^{-20} -2 q^{-21} + q^{-22} +8 q^{-23} +11 q^{-24} +7 q^{-25} +4 q^{-26} -7 q^{-27} -14 q^{-28} -10 q^{-29} -6 q^{-30} +3 q^{-31} +12 q^{-32} +13 q^{-33} +10 q^{-34} -11 q^{-36} -11 q^{-37} -11 q^{-38} -4 q^{-39} +7 q^{-40} +10 q^{-41} +10 q^{-42} +4 q^{-43} -4 q^{-44} -6 q^{-45} -7 q^{-46} -5 q^{-47} +3 q^{-48} +5 q^{-49} +4 q^{-50} + q^{-51} -3 q^{-52} -3 q^{-53} -2 q^{-54} +4 q^{-56} +6 q^{-57} +2 q^{-58} -2 q^{-59} -6 q^{-60} -6 q^{-61} -2 q^{-62} +4 q^{-64} +8 q^{-65} +5 q^{-66} -4 q^{-68} -7 q^{-69} -3 q^{-70} -2 q^{-71} +6 q^{-73} +4 q^{-74} +2 q^{-75} - q^{-76} -4 q^{-77} - q^{-78} - q^{-79} - q^{-80} +4 q^{-81} + q^{-82} -3 q^{-85} - q^{-86} - q^{-87} +4 q^{-89} + q^{-90} + q^{-92} -2 q^{-93} - q^{-94} -2 q^{-95} - q^{-96} +2 q^{-97} + q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math>}}
coloured_jones_4 = <math>q^{32}-q^{31}-q^{29}-q^{28}+3 q^{27}-q^{26}+3 q^{25}-3 q^{24}-4 q^{23}+4 q^{22}-q^{21}+6 q^{20}-3 q^{19}-5 q^{18}+3 q^{17}-3 q^{16}+7 q^{15}-2 q^{14}-5 q^{13}+3 q^{12}-3 q^{11}+6 q^{10}-q^9-4 q^8+2 q^7-3 q^6+5 q^5+q^4-3 q^3+q^2-4 q+4+3 q^{-1} -2 q^{-2} - q^{-3} -5 q^{-4} +3 q^{-5} +5 q^{-6} -2 q^{-8} -6 q^{-9} + q^{-10} +6 q^{-11} +2 q^{-12} -2 q^{-13} -5 q^{-14} - q^{-15} +5 q^{-16} +2 q^{-17} - q^{-18} -3 q^{-19} -2 q^{-20} +4 q^{-21} - q^{-23} - q^{-24} - q^{-25} +4 q^{-26} - q^{-27} - q^{-28} - q^{-29} - q^{-30} +3 q^{-31} - q^{-34} - q^{-35} + q^{-36} </math> |

coloured_jones_5 = <math>q^{47}-q^{45}-2 q^{44}-q^{43}+4 q^{41}+5 q^{40}-5 q^{38}-7 q^{37}-3 q^{36}+5 q^{35}+11 q^{34}+5 q^{33}-6 q^{32}-12 q^{31}-7 q^{30}+5 q^{29}+13 q^{28}+8 q^{27}-5 q^{26}-13 q^{25}-8 q^{24}+5 q^{23}+13 q^{22}+8 q^{21}-5 q^{20}-13 q^{19}-8 q^{18}+6 q^{17}+13 q^{16}+7 q^{15}-6 q^{14}-13 q^{13}-7 q^{12}+7 q^{11}+12 q^{10}+6 q^9-6 q^8-11 q^7-6 q^6+6 q^5+10 q^4+5 q^3-4 q^2-9 q-5+4 q^{-1} +7 q^{-2} +4 q^{-3} -2 q^{-4} -6 q^{-5} -4 q^{-6} +3 q^{-7} +4 q^{-8} +2 q^{-9} - q^{-10} -3 q^{-11} - q^{-12} +2 q^{-13} +2 q^{-14} - q^{-15} -3 q^{-16} - q^{-17} +2 q^{-18} +4 q^{-19} +2 q^{-20} -3 q^{-21} -6 q^{-22} -2 q^{-23} +3 q^{-24} +5 q^{-25} +4 q^{-26} -2 q^{-27} -6 q^{-28} -3 q^{-29} + q^{-30} +4 q^{-31} +4 q^{-32} -4 q^{-34} -2 q^{-35} +2 q^{-37} +2 q^{-38} - q^{-39} -2 q^{-40} - q^{-41} + q^{-42} +2 q^{-43} + q^{-44} - q^{-45} - q^{-46} -2 q^{-47} +2 q^{-49} + q^{-50} - q^{-53} - q^{-54} + q^{-55} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{66}-q^{65}-q^{62}-q^{61}-q^{60}+3 q^{59}+q^{58}+4 q^{57}+q^{56}-2 q^{55}-7 q^{54}-6 q^{53}+2 q^{51}+14 q^{50}+7 q^{49}+2 q^{48}-13 q^{47}-14 q^{46}-7 q^{45}-q^{44}+20 q^{43}+13 q^{42}+9 q^{41}-12 q^{40}-16 q^{39}-13 q^{38}-5 q^{37}+20 q^{36}+14 q^{35}+13 q^{34}-11 q^{33}-14 q^{32}-15 q^{31}-7 q^{30}+19 q^{29}+13 q^{28}+14 q^{27}-11 q^{26}-14 q^{25}-15 q^{24}-6 q^{23}+19 q^{22}+13 q^{21}+14 q^{20}-10 q^{19}-14 q^{18}-15 q^{17}-5 q^{16}+17 q^{15}+11 q^{14}+14 q^{13}-8 q^{12}-12 q^{11}-15 q^{10}-5 q^9+13 q^8+9 q^7+16 q^6-5 q^5-9 q^4-16 q^3-6 q^2+8 q+7+18 q^{-1} -5 q^{-3} -17 q^{-4} -8 q^{-5} +2 q^{-6} +4 q^{-7} +19 q^{-8} +5 q^{-9} -16 q^{-11} -8 q^{-12} -4 q^{-13} - q^{-14} +17 q^{-15} +8 q^{-16} +4 q^{-17} -12 q^{-18} -5 q^{-19} -7 q^{-20} -5 q^{-21} +12 q^{-22} +7 q^{-23} +5 q^{-24} -8 q^{-25} -5 q^{-27} -5 q^{-28} +8 q^{-29} +3 q^{-30} + q^{-31} -7 q^{-32} +2 q^{-33} - q^{-34} - q^{-35} +8 q^{-36} +2 q^{-37} -3 q^{-38} -8 q^{-39} - q^{-40} - q^{-41} + q^{-42} +9 q^{-43} +4 q^{-44} -2 q^{-45} -6 q^{-46} -3 q^{-47} -3 q^{-48} - q^{-49} +8 q^{-50} +3 q^{-51} -2 q^{-53} -2 q^{-54} -2 q^{-55} -2 q^{-56} +6 q^{-57} - q^{-59} - q^{-60} - q^{-61} - q^{-62} - q^{-63} +5 q^{-64} - q^{-67} - q^{-68} -2 q^{-69} - q^{-70} +3 q^{-71} + q^{-73} - q^{-76} - q^{-77} + q^{-78} </math> |

coloured_jones_7 = <math>q^{87}-q^{85}-q^{84}-q^{83}-q^{82}+q^{80}+5 q^{79}+4 q^{78}+q^{77}-q^{76}-5 q^{75}-7 q^{74}-9 q^{73}-4 q^{72}+7 q^{71}+15 q^{70}+11 q^{69}+9 q^{68}-q^{67}-15 q^{66}-22 q^{65}-20 q^{64}+q^{63}+18 q^{62}+23 q^{61}+24 q^{60}+8 q^{59}-15 q^{58}-27 q^{57}-30 q^{56}-10 q^{55}+15 q^{54}+25 q^{53}+30 q^{52}+13 q^{51}-12 q^{50}-24 q^{49}-31 q^{48}-13 q^{47}+12 q^{46}+23 q^{45}+29 q^{44}+13 q^{43}-13 q^{42}-22 q^{41}-29 q^{40}-12 q^{39}+13 q^{38}+22 q^{37}+29 q^{36}+12 q^{35}-13 q^{34}-23 q^{33}-29 q^{32}-11 q^{31}+14 q^{30}+23 q^{29}+28 q^{28}+11 q^{27}-14 q^{26}-24 q^{25}-27 q^{24}-9 q^{23}+15 q^{22}+22 q^{21}+25 q^{20}+9 q^{19}-14 q^{18}-22 q^{17}-24 q^{16}-7 q^{15}+13 q^{14}+19 q^{13}+21 q^{12}+8 q^{11}-11 q^{10}-17 q^9-19 q^8-7 q^7+9 q^6+13 q^5+16 q^4+9 q^3-6 q^2-10 q-14-7 q^{-1} +3 q^{-2} +5 q^{-3} +10 q^{-4} +9 q^{-5} -3 q^{-7} -6 q^{-8} -6 q^{-9} -2 q^{-10} -3 q^{-11} + q^{-12} +6 q^{-13} +3 q^{-14} +5 q^{-15} +3 q^{-16} - q^{-17} -2 q^{-18} -8 q^{-19} -9 q^{-20} -2 q^{-21} + q^{-22} +8 q^{-23} +11 q^{-24} +7 q^{-25} +4 q^{-26} -7 q^{-27} -14 q^{-28} -10 q^{-29} -6 q^{-30} +3 q^{-31} +12 q^{-32} +13 q^{-33} +10 q^{-34} -11 q^{-36} -11 q^{-37} -11 q^{-38} -4 q^{-39} +7 q^{-40} +10 q^{-41} +10 q^{-42} +4 q^{-43} -4 q^{-44} -6 q^{-45} -7 q^{-46} -5 q^{-47} +3 q^{-48} +5 q^{-49} +4 q^{-50} + q^{-51} -3 q^{-52} -3 q^{-53} -2 q^{-54} +4 q^{-56} +6 q^{-57} +2 q^{-58} -2 q^{-59} -6 q^{-60} -6 q^{-61} -2 q^{-62} +4 q^{-64} +8 q^{-65} +5 q^{-66} -4 q^{-68} -7 q^{-69} -3 q^{-70} -2 q^{-71} +6 q^{-73} +4 q^{-74} +2 q^{-75} - q^{-76} -4 q^{-77} - q^{-78} - q^{-79} - q^{-80} +4 q^{-81} + q^{-82} -3 q^{-85} - q^{-86} - q^{-87} +4 q^{-89} + q^{-90} + q^{-92} -2 q^{-93} - q^{-94} -2 q^{-95} - q^{-96} +2 q^{-97} + q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 42]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 42]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],
X[18, 14, 1, 13], X[12, 18, 13, 17]]</nowiki></pre></td></tr>
X[18, 14, 1, 13], X[12, 18, 13, 17]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 42]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 42]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 42]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, -14, 2, -16, -18, -6, -12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 42]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 42]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 42]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, -14, 2, -16, -18, -6, -12]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 42]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_42_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 42]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 42]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 42]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 42]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 42]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_42_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 42]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 42]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2
-1 - t + - + 2 t - t
-1 - t + - + 2 t - t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 42]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 42]][z]</nowiki></code></td></tr>
1 - 2 z - z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 42]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 - 2 z - z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 42]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 -2 1 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 42]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 42]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 -2 1 2 3
-1 + q - q + - + q - q + q
-1 + q - q + - + q - q + q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 42]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 42]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 -2 2 6 8 10
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 42]}</nowiki></code></td></tr>
-1 + q + q + q - q - q + q + q + q</nowiki></pre></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 42]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 42]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 -6 -2 2 6 8 10
-1 + q + q + q - q - q + q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 42]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
2 2 2 z 2 2 4
2 2 2 z 2 2 4
-3 + -- + 2 a - 4 z + -- + a z - z
-3 + -- + 2 a - 4 z + -- + a z - z
2 2
2 2
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 42]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 42]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3
2 2 2 z 2 6 z 2 2 6 z 3
2 2 2 z 2 6 z 2 2 6 z 3
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + 6 a z -
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + 6 a z -
Line 153: Line 195:
10 z - ---- - 5 a z - ---- - 5 a z + 2 z + -- + a z + -- + a z
10 z - ---- - 5 a z - ---- - 5 a z + 2 z + -- + a z + -- + a z
2 a 2 a
2 a 2 a
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 42]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1 3 1 1 1 1 q 3 7 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 42]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1 3 1 1 1 1 q 3 7 2
- + q + q + ----- + ----- + ----- + --- + - + q t + q t
- + q + q + ----- + ----- + ----- + --- + - + q t + q t
q 7 4 3 3 3 2 q t t
q 7 4 3 3 3 2 q t t
q t q t q t</nowiki></pre></td></tr>
q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 42], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -9 -8 2 -6 -5 2 -3 1 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 42], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -9 -8 2 -6 -5 2 -3 1 3 4
-1 + q - q - q + -- - q - q + -- - q + - + q - q + 2 q -
-1 + q - q - q + -- - q - q + -- - q + - + q - q + 2 q -
7 4 q
7 4 q
Line 171: Line 225:
5 6 7 8 9 10
5 6 7 8 9 10
q - q + 2 q - q - q + q</nowiki></pre></td></tr>
q - q + 2 q - q - q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:05, 1 September 2005

9 41.gif

9_41

9 43.gif

9_43

9 42.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 42's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 42 at Knotilus!

9_42 is Alexander Stoimenow's favourite knot!

Alsacian chair, alsacian museum, Strasbourg, France

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
Gauss code -1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8
Dowker-Thistlethwaite code 4 8 10 -14 2 -16 -18 -6 -12
Conway Notation [22,3,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 42 ML.gif 9 42 AP.gif
[{11, 2}, {1, 9}, {10, 5}, {9, 11}, {8, 4}, {2, 7}, {6, 8}, {7, 10}, {5, 3}, {4, 1}, {3, 6}]

[edit Notes on presentations of 9 42]

Knot 9_42.
A graph, knot 9_42.
A part of a knot and a part of a graph.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-5]
Hyperbolic Volume 4.05686
A-Polynomial See Data:9 42/A-polynomial

[edit Notes for 9 42's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 42's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
7      11
5       0
3    11 0
1   11  0
-1   11  0
-3 11    0
-5       0
-71      1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials