10 102: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 102 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,5,-1,6,-8,2,-3,7,-10,9,-5,4,-2,8,-6,10,-9/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=102|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,5,-1,6,-8,2,-3,7,-10,9,-5,4,-2,8,-6,10,-9/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
||
Line 72: | Line 40: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{18}-3 q^{17}+q^{16}+10 q^{15}-16 q^{14}-6 q^{13}+39 q^{12}-29 q^{11}-34 q^{10}+76 q^9-26 q^8-74 q^7+101 q^6-7 q^5-106 q^4+104 q^3+15 q^2-113 q+83+28 q^{-1} -87 q^{-2} +46 q^{-3} +24 q^{-4} -45 q^{-5} +18 q^{-6} +10 q^{-7} -15 q^{-8} +6 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math> | |
|||
coloured_jones_3 = <math>q^{36}-3 q^{35}+q^{34}+5 q^{33}+2 q^{32}-16 q^{31}-8 q^{30}+32 q^{29}+28 q^{28}-49 q^{27}-67 q^{26}+52 q^{25}+129 q^{24}-37 q^{23}-191 q^{22}-17 q^{21}+249 q^{20}+99 q^{19}-284 q^{18}-197 q^{17}+284 q^{16}+302 q^{15}-254 q^{14}-399 q^{13}+201 q^{12}+481 q^{11}-135 q^{10}-542 q^9+60 q^8+582 q^7+18 q^6-602 q^5-88 q^4+585 q^3+162 q^2-548 q-205+460 q^{-1} +247 q^{-2} -368 q^{-3} -240 q^{-4} +254 q^{-5} +214 q^{-6} -158 q^{-7} -162 q^{-8} +82 q^{-9} +109 q^{-10} -42 q^{-11} -58 q^{-12} +19 q^{-13} +28 q^{-14} -12 q^{-15} -11 q^{-16} +9 q^{-17} +4 q^{-18} -7 q^{-19} +2 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{18}-3 q^{17}+q^{16}+10 q^{15}-16 q^{14}-6 q^{13}+39 q^{12}-29 q^{11}-34 q^{10}+76 q^9-26 q^8-74 q^7+101 q^6-7 q^5-106 q^4+104 q^3+15 q^2-113 q+83+28 q^{-1} -87 q^{-2} +46 q^{-3} +24 q^{-4} -45 q^{-5} +18 q^{-6} +10 q^{-7} -15 q^{-8} +6 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-3 q^{35}+q^{34}+5 q^{33}+2 q^{32}-16 q^{31}-8 q^{30}+32 q^{29}+28 q^{28}-49 q^{27}-67 q^{26}+52 q^{25}+129 q^{24}-37 q^{23}-191 q^{22}-17 q^{21}+249 q^{20}+99 q^{19}-284 q^{18}-197 q^{17}+284 q^{16}+302 q^{15}-254 q^{14}-399 q^{13}+201 q^{12}+481 q^{11}-135 q^{10}-542 q^9+60 q^8+582 q^7+18 q^6-602 q^5-88 q^4+585 q^3+162 q^2-548 q-205+460 q^{-1} +247 q^{-2} -368 q^{-3} -240 q^{-4} +254 q^{-5} +214 q^{-6} -158 q^{-7} -162 q^{-8} +82 q^{-9} +109 q^{-10} -42 q^{-11} -58 q^{-12} +19 q^{-13} +28 q^{-14} -12 q^{-15} -11 q^{-16} +9 q^{-17} +4 q^{-18} -7 q^{-19} +2 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}+2 q^{55}-19 q^{54}+4 q^{53}+35 q^{52}+4 q^{51}+8 q^{50}-98 q^{49}-42 q^{48}+103 q^{47}+101 q^{46}+135 q^{45}-239 q^{44}-283 q^{43}+9 q^{42}+234 q^{41}+603 q^{40}-122 q^{39}-595 q^{38}-510 q^{37}-60 q^{36}+1182 q^{35}+549 q^{34}-372 q^{33}-1125 q^{32}-1079 q^{31}+1159 q^{30}+1348 q^{29}+675 q^{28}-1081 q^{27}-2312 q^{26}+255 q^{25}+1529 q^{24}+2032 q^{23}-186 q^{22}-3039 q^{21}-1021 q^{20}+958 q^{19}+3045 q^{18}+1059 q^{17}-3118 q^{16}-2115 q^{15}+65 q^{14}+3579 q^{13}+2177 q^{12}-2832 q^{11}-2887 q^{10}-816 q^9+3738 q^8+3059 q^7-2276 q^6-3336 q^5-1678 q^4+3418 q^3+3638 q^2-1318 q-3215-2436 q^{-1} +2403 q^{-2} +3579 q^{-3} -109 q^{-4} -2287 q^{-5} -2639 q^{-6} +975 q^{-7} +2632 q^{-8} +693 q^{-9} -922 q^{-10} -1992 q^{-11} -68 q^{-12} +1279 q^{-13} +686 q^{-14} +25 q^{-15} -977 q^{-16} -305 q^{-17} +348 q^{-18} +273 q^{-19} +243 q^{-20} -298 q^{-21} -140 q^{-22} +40 q^{-23} +16 q^{-24} +132 q^{-25} -65 q^{-26} -19 q^{-27} +6 q^{-28} -29 q^{-29} +40 q^{-30} -16 q^{-31} +4 q^{-32} +6 q^{-33} -13 q^{-34} +8 q^{-35} -4 q^{-36} +2 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>q^{90}-3 q^{89}+q^{88}+5 q^{87}-3 q^{86}-3 q^{85}-q^{84}-7 q^{83}+6 q^{82}+30 q^{81}+8 q^{80}-30 q^{79}-45 q^{78}-50 q^{77}+16 q^{76}+128 q^{75}+157 q^{74}+17 q^{73}-192 q^{72}-335 q^{71}-235 q^{70}+179 q^{69}+605 q^{68}+637 q^{67}+82 q^{66}-758 q^{65}-1232 q^{64}-757 q^{63}+550 q^{62}+1791 q^{61}+1853 q^{60}+283 q^{59}-1920 q^{58}-3045 q^{57}-1897 q^{56}+1146 q^{55}+3922 q^{54}+3977 q^{53}+714 q^{52}-3730 q^{51}-5956 q^{50}-3646 q^{49}+2126 q^{48}+7099 q^{47}+6977 q^{46}+1015 q^{45}-6689 q^{44}-9976 q^{43}-5332 q^{42}+4510 q^{41}+11851 q^{40}+10028 q^{39}-659 q^{38}-12077 q^{37}-14368 q^{36}-4326 q^{35}+10632 q^{34}+17699 q^{33}+9687 q^{32}-7753 q^{31}-19725 q^{30}-14815 q^{29}+4003 q^{28}+20514 q^{27}+19230 q^{26}+44 q^{25}-20330 q^{24}-22779 q^{23}-3923 q^{22}+19550 q^{21}+25525 q^{20}+7395 q^{19}-18533 q^{18}-27651 q^{17}-10427 q^{16}+17472 q^{15}+29344 q^{14}+13141 q^{13}-16275 q^{12}-30781 q^{11}-15790 q^{10}+14891 q^9+31811 q^8+18420 q^7-12795 q^6-32257 q^5-21220 q^4+10011 q^3+31695 q^2+23621 q-6124-29716 q^{-1} -25525 q^{-2} +1714 q^{-3} +26177 q^{-4} +25991 q^{-5} +2937 q^{-6} -21127 q^{-7} -24932 q^{-8} -6866 q^{-9} +15224 q^{-10} +22028 q^{-11} +9535 q^{-12} -9293 q^{-13} -17801 q^{-14} -10441 q^{-15} +4184 q^{-16} +12919 q^{-17} +9782 q^{-18} -549 q^{-19} -8329 q^{-20} -7902 q^{-21} -1488 q^{-22} +4561 q^{-23} +5657 q^{-24} +2170 q^{-25} -2047 q^{-26} -3534 q^{-27} -1961 q^{-28} +586 q^{-29} +1934 q^{-30} +1431 q^{-31} +42 q^{-32} -923 q^{-33} -875 q^{-34} -207 q^{-35} +370 q^{-36} +459 q^{-37} +187 q^{-38} -109 q^{-39} -225 q^{-40} -124 q^{-41} +41 q^{-42} +84 q^{-43} +50 q^{-44} +13 q^{-45} -32 q^{-46} -40 q^{-47} +8 q^{-48} +13 q^{-49} -3 q^{-50} +10 q^{-51} + q^{-52} -11 q^{-53} +2 q^{-54} +4 q^{-55} -4 q^{-56} +2 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math>|J6=<math>q^{126}-3 q^{125}+q^{124}+5 q^{123}-3 q^{122}-3 q^{121}-6 q^{120}+11 q^{119}-5 q^{118}+q^{117}+33 q^{116}-11 q^{115}-30 q^{114}-59 q^{113}+12 q^{112}+7 q^{111}+50 q^{110}+184 q^{109}+62 q^{108}-79 q^{107}-318 q^{106}-221 q^{105}-224 q^{104}+66 q^{103}+714 q^{102}+764 q^{101}+506 q^{100}-475 q^{99}-950 q^{98}-1696 q^{97}-1349 q^{96}+541 q^{95}+2130 q^{94}+3217 q^{93}+2014 q^{92}+358 q^{91}-3476 q^{90}-5774 q^{89}-4408 q^{88}-654 q^{87}+4951 q^{86}+7925 q^{85}+9048 q^{84}+2364 q^{83}-6422 q^{82}-12597 q^{81}-13210 q^{80}-5607 q^{79}+5394 q^{78}+19052 q^{77}+20077 q^{76}+10828 q^{75}-6186 q^{74}-22897 q^{73}-28992 q^{72}-20834 q^{71}+6473 q^{70}+29024 q^{69}+40296 q^{68}+28989 q^{67}-1052 q^{66}-36130 q^{65}-56952 q^{64}-39274 q^{63}-1927 q^{62}+45337 q^{61}+70330 q^{60}+56932 q^{59}+3884 q^{58}-60852 q^{57}-87335 q^{56}-70063 q^{55}-2028 q^{54}+73356 q^{53}+113490 q^{52}+80747 q^{51}-9705 q^{50}-93783 q^{49}-133650 q^{48}-84650 q^{47}+21804 q^{46}+127695 q^{45}+151189 q^{44}+73937 q^{43}-48988 q^{42}-156602 q^{41}-160004 q^{40}-58160 q^{39}+95729 q^{38}+184571 q^{37}+150009 q^{36}+19514 q^{35}-139593 q^{34}-202709 q^{33}-130123 q^{32}+44450 q^{31}+184290 q^{30}+197880 q^{29}+80015 q^{28}-107233 q^{27}-217422 q^{26}-177844 q^{25}+117 q^{24}+171609 q^{23}+222886 q^{22}+120894 q^{21}-80040 q^{20}-221925 q^{19}-207773 q^{18}-30735 q^{17}+161460 q^{16}+240301 q^{15}+150885 q^{14}-59247 q^{13}-226308 q^{12}-234155 q^{11}-60229 q^{10}+149756 q^9+256463 q^8+184503 q^7-28946 q^6-221404 q^5-260122 q^4-103337 q^3+116818 q^2+257165 q+221314+25412 q^{-1} -184231 q^{-2} -265980 q^{-3} -154497 q^{-4} +49941 q^{-5} +216685 q^{-6} +235317 q^{-7} +91357 q^{-8} -105680 q^{-9} -224132 q^{-10} -180644 q^{-11} -30045 q^{-12} +131162 q^{-13} +198022 q^{-14} +129097 q^{-15} -15560 q^{-16} -137253 q^{-17} -153672 q^{-18} -78103 q^{-19} +38491 q^{-20} +118814 q^{-21} +113070 q^{-22} +38645 q^{-23} -49053 q^{-24} -89136 q^{-25} -73297 q^{-26} -15256 q^{-27} +43494 q^{-28} +64186 q^{-29} +42586 q^{-30} -315 q^{-31} -31353 q^{-32} -40384 q^{-33} -23473 q^{-34} +4683 q^{-35} +22655 q^{-36} +22982 q^{-37} +9688 q^{-38} -3983 q^{-39} -13618 q^{-40} -12778 q^{-41} -3840 q^{-42} +4221 q^{-43} +7427 q^{-44} +5249 q^{-45} +1824 q^{-46} -2636 q^{-47} -4221 q^{-48} -2246 q^{-49} +28 q^{-50} +1504 q^{-51} +1457 q^{-52} +1212 q^{-53} -185 q^{-54} -1038 q^{-55} -619 q^{-56} -191 q^{-57} +202 q^{-58} +215 q^{-59} +411 q^{-60} +51 q^{-61} -239 q^{-62} -102 q^{-63} -52 q^{-64} +27 q^{-65} -11 q^{-66} +110 q^{-67} +22 q^{-68} -60 q^{-69} -4 q^{-70} -8 q^{-71} +11 q^{-72} -19 q^{-73} +23 q^{-74} +7 q^{-75} -16 q^{-76} +4 q^{-77} -2 q^{-78} +4 q^{-79} -4 q^{-80} +2 q^{-81} +2 q^{-82} -3 q^{-83} + q^{-84} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}+2 q^{55}-19 q^{54}+4 q^{53}+35 q^{52}+4 q^{51}+8 q^{50}-98 q^{49}-42 q^{48}+103 q^{47}+101 q^{46}+135 q^{45}-239 q^{44}-283 q^{43}+9 q^{42}+234 q^{41}+603 q^{40}-122 q^{39}-595 q^{38}-510 q^{37}-60 q^{36}+1182 q^{35}+549 q^{34}-372 q^{33}-1125 q^{32}-1079 q^{31}+1159 q^{30}+1348 q^{29}+675 q^{28}-1081 q^{27}-2312 q^{26}+255 q^{25}+1529 q^{24}+2032 q^{23}-186 q^{22}-3039 q^{21}-1021 q^{20}+958 q^{19}+3045 q^{18}+1059 q^{17}-3118 q^{16}-2115 q^{15}+65 q^{14}+3579 q^{13}+2177 q^{12}-2832 q^{11}-2887 q^{10}-816 q^9+3738 q^8+3059 q^7-2276 q^6-3336 q^5-1678 q^4+3418 q^3+3638 q^2-1318 q-3215-2436 q^{-1} +2403 q^{-2} +3579 q^{-3} -109 q^{-4} -2287 q^{-5} -2639 q^{-6} +975 q^{-7} +2632 q^{-8} +693 q^{-9} -922 q^{-10} -1992 q^{-11} -68 q^{-12} +1279 q^{-13} +686 q^{-14} +25 q^{-15} -977 q^{-16} -305 q^{-17} +348 q^{-18} +273 q^{-19} +243 q^{-20} -298 q^{-21} -140 q^{-22} +40 q^{-23} +16 q^{-24} +132 q^{-25} -65 q^{-26} -19 q^{-27} +6 q^{-28} -29 q^{-29} +40 q^{-30} -16 q^{-31} +4 q^{-32} +6 q^{-33} -13 q^{-34} +8 q^{-35} -4 q^{-36} +2 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math> | |
|||
coloured_jones_5 = <math>q^{90}-3 q^{89}+q^{88}+5 q^{87}-3 q^{86}-3 q^{85}-q^{84}-7 q^{83}+6 q^{82}+30 q^{81}+8 q^{80}-30 q^{79}-45 q^{78}-50 q^{77}+16 q^{76}+128 q^{75}+157 q^{74}+17 q^{73}-192 q^{72}-335 q^{71}-235 q^{70}+179 q^{69}+605 q^{68}+637 q^{67}+82 q^{66}-758 q^{65}-1232 q^{64}-757 q^{63}+550 q^{62}+1791 q^{61}+1853 q^{60}+283 q^{59}-1920 q^{58}-3045 q^{57}-1897 q^{56}+1146 q^{55}+3922 q^{54}+3977 q^{53}+714 q^{52}-3730 q^{51}-5956 q^{50}-3646 q^{49}+2126 q^{48}+7099 q^{47}+6977 q^{46}+1015 q^{45}-6689 q^{44}-9976 q^{43}-5332 q^{42}+4510 q^{41}+11851 q^{40}+10028 q^{39}-659 q^{38}-12077 q^{37}-14368 q^{36}-4326 q^{35}+10632 q^{34}+17699 q^{33}+9687 q^{32}-7753 q^{31}-19725 q^{30}-14815 q^{29}+4003 q^{28}+20514 q^{27}+19230 q^{26}+44 q^{25}-20330 q^{24}-22779 q^{23}-3923 q^{22}+19550 q^{21}+25525 q^{20}+7395 q^{19}-18533 q^{18}-27651 q^{17}-10427 q^{16}+17472 q^{15}+29344 q^{14}+13141 q^{13}-16275 q^{12}-30781 q^{11}-15790 q^{10}+14891 q^9+31811 q^8+18420 q^7-12795 q^6-32257 q^5-21220 q^4+10011 q^3+31695 q^2+23621 q-6124-29716 q^{-1} -25525 q^{-2} +1714 q^{-3} +26177 q^{-4} +25991 q^{-5} +2937 q^{-6} -21127 q^{-7} -24932 q^{-8} -6866 q^{-9} +15224 q^{-10} +22028 q^{-11} +9535 q^{-12} -9293 q^{-13} -17801 q^{-14} -10441 q^{-15} +4184 q^{-16} +12919 q^{-17} +9782 q^{-18} -549 q^{-19} -8329 q^{-20} -7902 q^{-21} -1488 q^{-22} +4561 q^{-23} +5657 q^{-24} +2170 q^{-25} -2047 q^{-26} -3534 q^{-27} -1961 q^{-28} +586 q^{-29} +1934 q^{-30} +1431 q^{-31} +42 q^{-32} -923 q^{-33} -875 q^{-34} -207 q^{-35} +370 q^{-36} +459 q^{-37} +187 q^{-38} -109 q^{-39} -225 q^{-40} -124 q^{-41} +41 q^{-42} +84 q^{-43} +50 q^{-44} +13 q^{-45} -32 q^{-46} -40 q^{-47} +8 q^{-48} +13 q^{-49} -3 q^{-50} +10 q^{-51} + q^{-52} -11 q^{-53} +2 q^{-54} +4 q^{-55} -4 q^{-56} +2 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{126}-3 q^{125}+q^{124}+5 q^{123}-3 q^{122}-3 q^{121}-6 q^{120}+11 q^{119}-5 q^{118}+q^{117}+33 q^{116}-11 q^{115}-30 q^{114}-59 q^{113}+12 q^{112}+7 q^{111}+50 q^{110}+184 q^{109}+62 q^{108}-79 q^{107}-318 q^{106}-221 q^{105}-224 q^{104}+66 q^{103}+714 q^{102}+764 q^{101}+506 q^{100}-475 q^{99}-950 q^{98}-1696 q^{97}-1349 q^{96}+541 q^{95}+2130 q^{94}+3217 q^{93}+2014 q^{92}+358 q^{91}-3476 q^{90}-5774 q^{89}-4408 q^{88}-654 q^{87}+4951 q^{86}+7925 q^{85}+9048 q^{84}+2364 q^{83}-6422 q^{82}-12597 q^{81}-13210 q^{80}-5607 q^{79}+5394 q^{78}+19052 q^{77}+20077 q^{76}+10828 q^{75}-6186 q^{74}-22897 q^{73}-28992 q^{72}-20834 q^{71}+6473 q^{70}+29024 q^{69}+40296 q^{68}+28989 q^{67}-1052 q^{66}-36130 q^{65}-56952 q^{64}-39274 q^{63}-1927 q^{62}+45337 q^{61}+70330 q^{60}+56932 q^{59}+3884 q^{58}-60852 q^{57}-87335 q^{56}-70063 q^{55}-2028 q^{54}+73356 q^{53}+113490 q^{52}+80747 q^{51}-9705 q^{50}-93783 q^{49}-133650 q^{48}-84650 q^{47}+21804 q^{46}+127695 q^{45}+151189 q^{44}+73937 q^{43}-48988 q^{42}-156602 q^{41}-160004 q^{40}-58160 q^{39}+95729 q^{38}+184571 q^{37}+150009 q^{36}+19514 q^{35}-139593 q^{34}-202709 q^{33}-130123 q^{32}+44450 q^{31}+184290 q^{30}+197880 q^{29}+80015 q^{28}-107233 q^{27}-217422 q^{26}-177844 q^{25}+117 q^{24}+171609 q^{23}+222886 q^{22}+120894 q^{21}-80040 q^{20}-221925 q^{19}-207773 q^{18}-30735 q^{17}+161460 q^{16}+240301 q^{15}+150885 q^{14}-59247 q^{13}-226308 q^{12}-234155 q^{11}-60229 q^{10}+149756 q^9+256463 q^8+184503 q^7-28946 q^6-221404 q^5-260122 q^4-103337 q^3+116818 q^2+257165 q+221314+25412 q^{-1} -184231 q^{-2} -265980 q^{-3} -154497 q^{-4} +49941 q^{-5} +216685 q^{-6} +235317 q^{-7} +91357 q^{-8} -105680 q^{-9} -224132 q^{-10} -180644 q^{-11} -30045 q^{-12} +131162 q^{-13} +198022 q^{-14} +129097 q^{-15} -15560 q^{-16} -137253 q^{-17} -153672 q^{-18} -78103 q^{-19} +38491 q^{-20} +118814 q^{-21} +113070 q^{-22} +38645 q^{-23} -49053 q^{-24} -89136 q^{-25} -73297 q^{-26} -15256 q^{-27} +43494 q^{-28} +64186 q^{-29} +42586 q^{-30} -315 q^{-31} -31353 q^{-32} -40384 q^{-33} -23473 q^{-34} +4683 q^{-35} +22655 q^{-36} +22982 q^{-37} +9688 q^{-38} -3983 q^{-39} -13618 q^{-40} -12778 q^{-41} -3840 q^{-42} +4221 q^{-43} +7427 q^{-44} +5249 q^{-45} +1824 q^{-46} -2636 q^{-47} -4221 q^{-48} -2246 q^{-49} +28 q^{-50} +1504 q^{-51} +1457 q^{-52} +1212 q^{-53} -185 q^{-54} -1038 q^{-55} -619 q^{-56} -191 q^{-57} +202 q^{-58} +215 q^{-59} +411 q^{-60} +51 q^{-61} -239 q^{-62} -102 q^{-63} -52 q^{-64} +27 q^{-65} -11 q^{-66} +110 q^{-67} +22 q^{-68} -60 q^{-69} -4 q^{-70} -8 q^{-71} +11 q^{-72} -19 q^{-73} +23 q^{-74} +7 q^{-75} -16 q^{-76} +4 q^{-77} -2 q^{-78} +4 q^{-79} -4 q^{-80} +2 q^{-81} +2 q^{-82} -3 q^{-83} + q^{-84} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 102]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 10, 17, 9], X[10, 3, 11, 4], X[2, 15, 3, 16], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 102]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 10, 17, 9], X[10, 3, 11, 4], X[2, 15, 3, 16], |
|||
X[14, 5, 15, 6], X[18, 8, 19, 7], X[4, 11, 5, 12], X[8, 18, 9, 17], |
X[14, 5, 15, 6], X[18, 8, 19, 7], X[4, 11, 5, 12], X[8, 18, 9, 17], |
||
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></ |
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 102]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 102]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -10, 9, -5, 4, -2, 8, |
|||
-6, 10, -9]</nowiki></ |
-6, 10, -9]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 102]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 102]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 102]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 18, 16, 4, 20, 2, 8, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 102]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, -1, 2, 2, 3, 3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 102]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_102_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 102]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 102]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 102]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 102]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_102_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 102]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 102]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 16 2 3 |
|||
21 - -- + -- - -- - 16 t + 8 t - 2 t |
21 - -- + -- - -- - 16 t + 8 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 102]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 102]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - 2 z - 4 z - 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 102]], KnotSignature[Knot[10, 102]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{73, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 9 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 102]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 102]], KnotSignature[Knot[10, 102]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{73, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 102]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 6 9 2 3 4 5 6 |
|||
12 + q - -- + -- - - - 12 q + 11 q - 9 q + 6 q - 3 q + q |
12 + q - -- + -- - - - 12 q + 11 q - 9 q + 6 q - 3 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 102]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 102]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 102]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -10 -8 -6 2 3 2 6 8 10 |
|||
-1 + q - q + q + q - -- + -- + q - 2 q + 2 q - 2 q + |
-1 + q - q + q + q - -- + -- + q - 2 q + 2 q - 2 q + |
||
4 2 |
4 2 |
||
Line 146: | Line 180: | ||
12 14 16 18 |
12 14 16 18 |
||
q + q - q + q</nowiki></ |
q + q - q + q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 102]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 102]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 |
|||
-4 -2 2 2 2 z 3 z 2 2 4 z 3 z |
-4 -2 2 2 2 z 3 z 2 2 4 z 3 z |
||
a - a + a - 3 z + ---- - ---- + 2 a z - 3 z + -- - ---- + |
a - a + a - 3 z + ---- - ---- + 2 a z - 3 z + -- - ---- + |
||
Line 159: | Line 197: | ||
a z - z - -- |
a z - z - -- |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 102]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 102]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 |
|||
-4 -2 2 2 z 4 z 4 z 2 2 z 4 z 8 z |
-4 -2 2 2 z 4 z 4 z 2 2 z 4 z 8 z |
||
a + a - a - --- - --- - --- - 2 a z + 2 z + ---- - ---- - ---- + |
a + a - a - --- - --- - --- - 2 a z + 2 z + ---- - ---- - ---- + |
||
Line 190: | Line 232: | ||
---- + 6 a z + 5 z + ---- + ---- + ---- + ---- |
---- + 6 a z + 5 z + ---- + ---- + ---- + ---- |
||
a 4 2 3 a |
a 4 2 3 a |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 102]], Vassiliev[3][Knot[10, 102]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 102]], Vassiliev[3][Knot[10, 102]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 102]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 102]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 1 2 1 4 2 5 4 |
|||
- + 6 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 6 q t + |
- + 6 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 6 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 205: | Line 255: | ||
9 5 11 5 13 6 |
9 5 11 5 13 6 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 102], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 102], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 3 2 6 15 10 18 45 24 46 87 28 |
|||
83 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - -- + -- - |
83 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - -- + -- - |
||
11 10 9 8 7 6 5 4 3 2 q |
11 10 9 8 7 6 5 4 3 2 q |
||
Line 220: | Line 274: | ||
17 18 |
17 18 |
||
3 q + q</nowiki></ |
3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:06, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 102's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,10,17,9 X10,3,11,4 X2,15,3,16 X14,5,15,6 X18,8,19,7 X4,11,5,12 X8,18,9,17 X20,14,1,13 X12,20,13,19 |
Gauss code | 1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -10, 9, -5, 4, -2, 8, -6, 10, -9 |
Dowker-Thistlethwaite code | 6 10 14 18 16 4 20 2 8 12 |
Conway Notation | [3:2:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 2}, {1, 8}, {3, 9}, {2, 4}, {8, 11}, {10, 12}, {5, 3}, {4, 7}, {11, 5}, {9, 6}, {7, 1}, {6, 10}] |
[edit Notes on presentations of 10 102]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 102"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,10,17,9 X10,3,11,4 X2,15,3,16 X14,5,15,6 X18,8,19,7 X4,11,5,12 X8,18,9,17 X20,14,1,13 X12,20,13,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, -10, 9, -5, 4, -2, 8, -6, 10, -9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 16 4 20 2 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 8}, {3, 9}, {2, 4}, {8, 11}, {10, 12}, {5, 3}, {4, 7}, {11, 5}, {9, 6}, {7, 1}, {6, 10}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 102"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 73, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 102"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 102. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|