9 22: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- provide an anchor so we can return to the top of the page -->
k = 22 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-3,4,-2,5,-9,8,-6,7,-5,9,-8/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=22|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-3,4,-2,5,-9,8,-6,7,-5,9,-8/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 9 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 9, width is 4.
braid_index = 4 |

same_alexander = [[K11n128]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = [[K11n3]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n128]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n3]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
Line 72: Line 39:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{17}-3 q^{16}+2 q^{15}+5 q^{14}-14 q^{13}+10 q^{12}+14 q^{11}-33 q^{10}+17 q^9+26 q^8-48 q^7+17 q^6+36 q^5-50 q^4+9 q^3+39 q^2-40 q-1+33 q^{-1} -23 q^{-2} -7 q^{-3} +20 q^{-4} -8 q^{-5} -6 q^{-6} +7 q^{-7} - q^{-8} -2 q^{-9} + q^{-10} </math> |

coloured_jones_3 = <math>-q^{33}+3 q^{32}-2 q^{31}-2 q^{30}+2 q^{29}+5 q^{28}-7 q^{27}-10 q^{26}+19 q^{25}+14 q^{24}-33 q^{23}-25 q^{22}+54 q^{21}+39 q^{20}-73 q^{19}-62 q^{18}+95 q^{17}+81 q^{16}-102 q^{15}-108 q^{14}+108 q^{13}+123 q^{12}-97 q^{11}-141 q^{10}+86 q^9+146 q^8-64 q^7-149 q^6+42 q^5+145 q^4-17 q^3-137 q^2-5 q+122+26 q^{-1} -102 q^{-2} -42 q^{-3} +79 q^{-4} +51 q^{-5} -55 q^{-6} -50 q^{-7} +29 q^{-8} +47 q^{-9} -14 q^{-10} -33 q^{-11} +23 q^{-13} +3 q^{-14} -11 q^{-15} -5 q^{-16} +6 q^{-17} +2 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} </math> |
{{Display Coloured Jones|J2=<math>q^{17}-3 q^{16}+2 q^{15}+5 q^{14}-14 q^{13}+10 q^{12}+14 q^{11}-33 q^{10}+17 q^9+26 q^8-48 q^7+17 q^6+36 q^5-50 q^4+9 q^3+39 q^2-40 q-1+33 q^{-1} -23 q^{-2} -7 q^{-3} +20 q^{-4} -8 q^{-5} -6 q^{-6} +7 q^{-7} - q^{-8} -2 q^{-9} + q^{-10} </math>|J3=<math>-q^{33}+3 q^{32}-2 q^{31}-2 q^{30}+2 q^{29}+5 q^{28}-7 q^{27}-10 q^{26}+19 q^{25}+14 q^{24}-33 q^{23}-25 q^{22}+54 q^{21}+39 q^{20}-73 q^{19}-62 q^{18}+95 q^{17}+81 q^{16}-102 q^{15}-108 q^{14}+108 q^{13}+123 q^{12}-97 q^{11}-141 q^{10}+86 q^9+146 q^8-64 q^7-149 q^6+42 q^5+145 q^4-17 q^3-137 q^2-5 q+122+26 q^{-1} -102 q^{-2} -42 q^{-3} +79 q^{-4} +51 q^{-5} -55 q^{-6} -50 q^{-7} +29 q^{-8} +47 q^{-9} -14 q^{-10} -33 q^{-11} +23 q^{-13} +3 q^{-14} -11 q^{-15} -5 q^{-16} +6 q^{-17} +2 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} </math>|J4=<math>q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-5 q^{50}+7 q^{49}-8 q^{48}+9 q^{47}-25 q^{45}+26 q^{44}-6 q^{43}+31 q^{42}-16 q^{41}-91 q^{40}+54 q^{39}+40 q^{38}+102 q^{37}-57 q^{36}-246 q^{35}+55 q^{34}+138 q^{33}+269 q^{32}-74 q^{31}-483 q^{30}-34 q^{29}+222 q^{28}+511 q^{27}-4 q^{26}-691 q^{25}-190 q^{24}+203 q^{23}+707 q^{22}+142 q^{21}-762 q^{20}-320 q^{19}+85 q^{18}+768 q^{17}+282 q^{16}-689 q^{15}-365 q^{14}-71 q^{13}+706 q^{12}+375 q^{11}-531 q^{10}-346 q^9-220 q^8+570 q^7+425 q^6-327 q^5-288 q^4-351 q^3+385 q^2+432 q-108-186 q^{-1} -424 q^{-2} +167 q^{-3} +357 q^{-4} +73 q^{-5} -35 q^{-6} -390 q^{-7} -25 q^{-8} +200 q^{-9} +144 q^{-10} +101 q^{-11} -248 q^{-12} -108 q^{-13} +37 q^{-14} +97 q^{-15} +143 q^{-16} -91 q^{-17} -78 q^{-18} -39 q^{-19} +19 q^{-20} +94 q^{-21} -9 q^{-22} -21 q^{-23} -32 q^{-24} -13 q^{-25} +34 q^{-26} +4 q^{-27} +2 q^{-28} -9 q^{-29} -9 q^{-30} +7 q^{-31} + q^{-32} +2 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} </math>|J5=<math>-q^{80}+3 q^{79}-2 q^{78}-2 q^{77}+5 q^{76}-4 q^{75}-4 q^{74}+6 q^{73}+q^{72}+9 q^{70}-12 q^{69}-23 q^{68}+4 q^{67}+30 q^{66}+37 q^{65}+7 q^{64}-64 q^{63}-96 q^{62}-24 q^{61}+138 q^{60}+201 q^{59}+48 q^{58}-227 q^{57}-373 q^{56}-149 q^{55}+354 q^{54}+656 q^{53}+307 q^{52}-481 q^{51}-998 q^{50}-606 q^{49}+557 q^{48}+1434 q^{47}+1005 q^{46}-547 q^{45}-1851 q^{44}-1524 q^{43}+410 q^{42}+2232 q^{41}+2060 q^{40}-144 q^{39}-2463 q^{38}-2613 q^{37}-195 q^{36}+2573 q^{35}+3010 q^{34}+600 q^{33}-2499 q^{32}-3327 q^{31}-962 q^{30}+2349 q^{29}+3426 q^{28}+1277 q^{27}-2076 q^{26}-3446 q^{25}-1502 q^{24}+1814 q^{23}+3309 q^{22}+1659 q^{21}-1502 q^{20}-3140 q^{19}-1757 q^{18}+1209 q^{17}+2902 q^{16}+1827 q^{15}-888 q^{14}-2651 q^{13}-1879 q^{12}+563 q^{11}+2349 q^{10}+1919 q^9-204 q^8-2015 q^7-1933 q^6-153 q^5+1621 q^4+1881 q^3+521 q^2-1184 q-1761-823 q^{-1} +711 q^{-2} +1533 q^{-3} +1042 q^{-4} -238 q^{-5} -1215 q^{-6} -1133 q^{-7} -178 q^{-8} +828 q^{-9} +1080 q^{-10} +482 q^{-11} -411 q^{-12} -898 q^{-13} -662 q^{-14} +57 q^{-15} +637 q^{-16} +661 q^{-17} +217 q^{-18} -331 q^{-19} -579 q^{-20} -348 q^{-21} +94 q^{-22} +384 q^{-23} +367 q^{-24} +94 q^{-25} -216 q^{-26} -300 q^{-27} -156 q^{-28} +56 q^{-29} +198 q^{-30} +167 q^{-31} +19 q^{-32} -98 q^{-33} -120 q^{-34} -61 q^{-35} +36 q^{-36} +78 q^{-37} +45 q^{-38} +2 q^{-39} -31 q^{-40} -40 q^{-41} -10 q^{-42} +18 q^{-43} +14 q^{-44} +8 q^{-45} +2 q^{-46} -11 q^{-47} -7 q^{-48} +3 q^{-49} +2 q^{-50} + q^{-51} +2 q^{-52} - q^{-53} -2 q^{-54} + q^{-55} </math>|J6=<math>q^{111}-3 q^{110}+2 q^{109}+2 q^{108}-5 q^{107}+4 q^{106}+q^{105}+6 q^{104}-16 q^{103}-q^{102}+16 q^{101}-17 q^{100}+17 q^{99}+13 q^{98}+5 q^{97}-59 q^{96}-21 q^{95}+51 q^{94}-5 q^{93}+79 q^{92}+55 q^{91}-43 q^{90}-234 q^{89}-130 q^{88}+138 q^{87}+148 q^{86}+370 q^{85}+216 q^{84}-239 q^{83}-806 q^{82}-626 q^{81}+211 q^{80}+689 q^{79}+1358 q^{78}+895 q^{77}-572 q^{76}-2210 q^{75}-2180 q^{74}-236 q^{73}+1653 q^{72}+3649 q^{71}+2956 q^{70}-391 q^{69}-4448 q^{68}-5493 q^{67}-2268 q^{66}+2177 q^{65}+7078 q^{64}+7070 q^{63}+1559 q^{62}-6289 q^{61}-10064 q^{60}-6488 q^{59}+787 q^{58}+9980 q^{57}+12336 q^{56}+5755 q^{55}-6027 q^{54}-13807 q^{53}-11655 q^{52}-2849 q^{51}+10506 q^{50}+16389 q^{49}+10695 q^{48}-3445 q^{47}-14891 q^{46}-15386 q^{45}-7086 q^{44}+8624 q^{43}+17616 q^{42}+14128 q^{41}-185 q^{40}-13507 q^{39}-16448 q^{38}-9964 q^{37}+5922 q^{36}+16471 q^{35}+15219 q^{34}+2167 q^{33}-11149 q^{32}-15521 q^{31}-11055 q^{30}+3634 q^{29}+14349 q^{28}+14794 q^{27}+3509 q^{26}-8770 q^{25}-13869 q^{24}-11249 q^{23}+1687 q^{22}+11987 q^{21}+13921 q^{20}+4662 q^{19}-6221 q^{18}-11990 q^{17}-11359 q^{16}-578 q^{15}+9173 q^{14}+12821 q^{13}+6111 q^{12}-3022 q^{11}-9519 q^{10}-11259 q^9-3325 q^8+5476 q^7+10899 q^6+7376 q^5+755 q^4-5958 q^3-10084 q^2-5760 q+1096+7547 q^{-1} +7321 q^{-2} +4068 q^{-3} -1572 q^{-4} -7131 q^{-5} -6524 q^{-6} -2724 q^{-7} +3124 q^{-8} +5174 q^{-9} +5400 q^{-10} +2215 q^{-11} -2922 q^{-12} -4862 q^{-13} -4343 q^{-14} -724 q^{-15} +1641 q^{-16} +4096 q^{-17} +3710 q^{-18} +667 q^{-19} -1735 q^{-20} -3270 q^{-21} -2272 q^{-22} -1239 q^{-23} +1390 q^{-24} +2652 q^{-25} +1967 q^{-26} +699 q^{-27} -980 q^{-28} -1493 q^{-29} -1986 q^{-30} -556 q^{-31} +696 q^{-32} +1233 q^{-33} +1215 q^{-34} +485 q^{-35} -97 q^{-36} -1132 q^{-37} -848 q^{-38} -376 q^{-39} +151 q^{-40} +549 q^{-41} +589 q^{-42} +486 q^{-43} -222 q^{-44} -331 q^{-45} -378 q^{-46} -224 q^{-47} -10 q^{-48} +195 q^{-49} +340 q^{-50} +65 q^{-51} +9 q^{-52} -108 q^{-53} -126 q^{-54} -109 q^{-55} -10 q^{-56} +110 q^{-57} +36 q^{-58} +47 q^{-59} +2 q^{-60} -19 q^{-61} -48 q^{-62} -25 q^{-63} +22 q^{-64} + q^{-65} +15 q^{-66} +7 q^{-67} +5 q^{-68} -11 q^{-69} -9 q^{-70} +5 q^{-71} -2 q^{-72} +2 q^{-73} + q^{-74} +2 q^{-75} - q^{-76} -2 q^{-77} + q^{-78} </math>|J7=<math>-q^{147}+3 q^{146}-2 q^{145}-2 q^{144}+5 q^{143}-4 q^{142}-q^{141}-3 q^{140}+4 q^{139}+16 q^{138}-15 q^{137}-8 q^{136}+12 q^{135}-13 q^{134}+2 q^{133}-q^{132}+20 q^{131}+46 q^{130}-49 q^{129}-51 q^{128}-8 q^{127}-28 q^{126}+62 q^{125}+73 q^{124}+91 q^{123}+92 q^{122}-189 q^{121}-268 q^{120}-197 q^{119}-63 q^{118}+376 q^{117}+542 q^{116}+472 q^{115}+158 q^{114}-737 q^{113}-1208 q^{112}-1078 q^{111}-286 q^{110}+1401 q^{109}+2345 q^{108}+2165 q^{107}+688 q^{106}-2240 q^{105}-4243 q^{104}-4291 q^{103}-1697 q^{102}+3385 q^{101}+7198 q^{100}+7661 q^{99}+3690 q^{98}-4322 q^{97}-11066 q^{96}-12903 q^{95}-7506 q^{94}+4628 q^{93}+15832 q^{92}+20120 q^{91}+13474 q^{90}-3445 q^{89}-20589 q^{88}-29035 q^{87}-22218 q^{86}-134 q^{85}+24548 q^{84}+39027 q^{83}+33387 q^{82}+6506 q^{81}-26403 q^{80}-48697 q^{79}-46300 q^{78}-15913 q^{77}+25355 q^{76}+56781 q^{75}+59556 q^{74}+27610 q^{73}-21019 q^{72}-61992 q^{71}-71665 q^{70}-40304 q^{69}+13813 q^{68}+63582 q^{67}+81127 q^{66}+52649 q^{65}-4618 q^{64}-61892 q^{63}-87234 q^{62}-62947 q^{61}-4978 q^{60}+57312 q^{59}+89586 q^{58}+70609 q^{57}+13971 q^{56}-51320 q^{55}-89026 q^{54}-75006 q^{53}-21070 q^{52}+44775 q^{51}+86065 q^{50}+76696 q^{49}+26316 q^{48}-38744 q^{47}-82094 q^{46}-76257 q^{45}-29468 q^{44}+33541 q^{43}+77532 q^{42}+74601 q^{41}+31433 q^{40}-29178 q^{39}-73186 q^{38}-72451 q^{37}-32606 q^{36}+25279 q^{35}+68923 q^{34}+70322 q^{33}+33847 q^{32}-21376 q^{31}-64741 q^{30}-68373 q^{29}-35479 q^{28}+16944 q^{27}+60183 q^{26}+66589 q^{25}+37742 q^{24}-11653 q^{23}-54911 q^{22}-64609 q^{21}-40506 q^{20}+5296 q^{19}+48518 q^{18}+62011 q^{17}+43492 q^{16}+2025 q^{15}-40817 q^{14}-58308 q^{13}-46079 q^{12}-9919 q^{11}+31642 q^{10}+53001 q^9+47681 q^8+17915 q^7-21368 q^6-45901 q^5-47466 q^4-25050 q^3+10375 q^2+36815 q+45006+30590 q^{-1} +395 q^{-2} -26306 q^{-3} -39906 q^{-4} -33501 q^{-5} -9964 q^{-6} +14992 q^{-7} +32305 q^{-8} +33373 q^{-9} +17267 q^{-10} -4072 q^{-11} -22958 q^{-12} -30013 q^{-13} -21349 q^{-14} -5224 q^{-15} +12850 q^{-16} +23874 q^{-17} +21982 q^{-18} +11861 q^{-19} -3461 q^{-20} -16144 q^{-21} -19327 q^{-22} -15020 q^{-23} -3962 q^{-24} +8009 q^{-25} +14268 q^{-26} +14978 q^{-27} +8606 q^{-28} -1119 q^{-29} -8295 q^{-30} -12166 q^{-31} -10059 q^{-32} -3738 q^{-33} +2545 q^{-34} +7993 q^{-35} +9113 q^{-36} +5977 q^{-37} +1579 q^{-38} -3635 q^{-39} -6417 q^{-40} -5987 q^{-41} -3895 q^{-42} +182 q^{-43} +3414 q^{-44} +4533 q^{-45} +4272 q^{-46} +1836 q^{-47} -820 q^{-48} -2521 q^{-49} -3480 q^{-50} -2469 q^{-51} -758 q^{-52} +744 q^{-53} +2154 q^{-54} +2148 q^{-55} +1365 q^{-56} +360 q^{-57} -939 q^{-58} -1363 q^{-59} -1246 q^{-60} -849 q^{-61} +103 q^{-62} +659 q^{-63} +856 q^{-64} +795 q^{-65} +232 q^{-66} -125 q^{-67} -387 q^{-68} -584 q^{-69} -341 q^{-70} -90 q^{-71} +141 q^{-72} +321 q^{-73} +210 q^{-74} +143 q^{-75} +47 q^{-76} -137 q^{-77} -145 q^{-78} -124 q^{-79} -47 q^{-80} +59 q^{-81} +40 q^{-82} +53 q^{-83} +62 q^{-84} +2 q^{-85} -20 q^{-86} -40 q^{-87} -30 q^{-88} +10 q^{-89} -2 q^{-90} +3 q^{-91} +17 q^{-92} +7 q^{-93} +4 q^{-94} -8 q^{-95} -9 q^{-96} +3 q^{-97} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} </math>}}
coloured_jones_4 = <math>q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-5 q^{50}+7 q^{49}-8 q^{48}+9 q^{47}-25 q^{45}+26 q^{44}-6 q^{43}+31 q^{42}-16 q^{41}-91 q^{40}+54 q^{39}+40 q^{38}+102 q^{37}-57 q^{36}-246 q^{35}+55 q^{34}+138 q^{33}+269 q^{32}-74 q^{31}-483 q^{30}-34 q^{29}+222 q^{28}+511 q^{27}-4 q^{26}-691 q^{25}-190 q^{24}+203 q^{23}+707 q^{22}+142 q^{21}-762 q^{20}-320 q^{19}+85 q^{18}+768 q^{17}+282 q^{16}-689 q^{15}-365 q^{14}-71 q^{13}+706 q^{12}+375 q^{11}-531 q^{10}-346 q^9-220 q^8+570 q^7+425 q^6-327 q^5-288 q^4-351 q^3+385 q^2+432 q-108-186 q^{-1} -424 q^{-2} +167 q^{-3} +357 q^{-4} +73 q^{-5} -35 q^{-6} -390 q^{-7} -25 q^{-8} +200 q^{-9} +144 q^{-10} +101 q^{-11} -248 q^{-12} -108 q^{-13} +37 q^{-14} +97 q^{-15} +143 q^{-16} -91 q^{-17} -78 q^{-18} -39 q^{-19} +19 q^{-20} +94 q^{-21} -9 q^{-22} -21 q^{-23} -32 q^{-24} -13 q^{-25} +34 q^{-26} +4 q^{-27} +2 q^{-28} -9 q^{-29} -9 q^{-30} +7 q^{-31} + q^{-32} +2 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} </math> |

coloured_jones_5 = <math>-q^{80}+3 q^{79}-2 q^{78}-2 q^{77}+5 q^{76}-4 q^{75}-4 q^{74}+6 q^{73}+q^{72}+9 q^{70}-12 q^{69}-23 q^{68}+4 q^{67}+30 q^{66}+37 q^{65}+7 q^{64}-64 q^{63}-96 q^{62}-24 q^{61}+138 q^{60}+201 q^{59}+48 q^{58}-227 q^{57}-373 q^{56}-149 q^{55}+354 q^{54}+656 q^{53}+307 q^{52}-481 q^{51}-998 q^{50}-606 q^{49}+557 q^{48}+1434 q^{47}+1005 q^{46}-547 q^{45}-1851 q^{44}-1524 q^{43}+410 q^{42}+2232 q^{41}+2060 q^{40}-144 q^{39}-2463 q^{38}-2613 q^{37}-195 q^{36}+2573 q^{35}+3010 q^{34}+600 q^{33}-2499 q^{32}-3327 q^{31}-962 q^{30}+2349 q^{29}+3426 q^{28}+1277 q^{27}-2076 q^{26}-3446 q^{25}-1502 q^{24}+1814 q^{23}+3309 q^{22}+1659 q^{21}-1502 q^{20}-3140 q^{19}-1757 q^{18}+1209 q^{17}+2902 q^{16}+1827 q^{15}-888 q^{14}-2651 q^{13}-1879 q^{12}+563 q^{11}+2349 q^{10}+1919 q^9-204 q^8-2015 q^7-1933 q^6-153 q^5+1621 q^4+1881 q^3+521 q^2-1184 q-1761-823 q^{-1} +711 q^{-2} +1533 q^{-3} +1042 q^{-4} -238 q^{-5} -1215 q^{-6} -1133 q^{-7} -178 q^{-8} +828 q^{-9} +1080 q^{-10} +482 q^{-11} -411 q^{-12} -898 q^{-13} -662 q^{-14} +57 q^{-15} +637 q^{-16} +661 q^{-17} +217 q^{-18} -331 q^{-19} -579 q^{-20} -348 q^{-21} +94 q^{-22} +384 q^{-23} +367 q^{-24} +94 q^{-25} -216 q^{-26} -300 q^{-27} -156 q^{-28} +56 q^{-29} +198 q^{-30} +167 q^{-31} +19 q^{-32} -98 q^{-33} -120 q^{-34} -61 q^{-35} +36 q^{-36} +78 q^{-37} +45 q^{-38} +2 q^{-39} -31 q^{-40} -40 q^{-41} -10 q^{-42} +18 q^{-43} +14 q^{-44} +8 q^{-45} +2 q^{-46} -11 q^{-47} -7 q^{-48} +3 q^{-49} +2 q^{-50} + q^{-51} +2 q^{-52} - q^{-53} -2 q^{-54} + q^{-55} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{111}-3 q^{110}+2 q^{109}+2 q^{108}-5 q^{107}+4 q^{106}+q^{105}+6 q^{104}-16 q^{103}-q^{102}+16 q^{101}-17 q^{100}+17 q^{99}+13 q^{98}+5 q^{97}-59 q^{96}-21 q^{95}+51 q^{94}-5 q^{93}+79 q^{92}+55 q^{91}-43 q^{90}-234 q^{89}-130 q^{88}+138 q^{87}+148 q^{86}+370 q^{85}+216 q^{84}-239 q^{83}-806 q^{82}-626 q^{81}+211 q^{80}+689 q^{79}+1358 q^{78}+895 q^{77}-572 q^{76}-2210 q^{75}-2180 q^{74}-236 q^{73}+1653 q^{72}+3649 q^{71}+2956 q^{70}-391 q^{69}-4448 q^{68}-5493 q^{67}-2268 q^{66}+2177 q^{65}+7078 q^{64}+7070 q^{63}+1559 q^{62}-6289 q^{61}-10064 q^{60}-6488 q^{59}+787 q^{58}+9980 q^{57}+12336 q^{56}+5755 q^{55}-6027 q^{54}-13807 q^{53}-11655 q^{52}-2849 q^{51}+10506 q^{50}+16389 q^{49}+10695 q^{48}-3445 q^{47}-14891 q^{46}-15386 q^{45}-7086 q^{44}+8624 q^{43}+17616 q^{42}+14128 q^{41}-185 q^{40}-13507 q^{39}-16448 q^{38}-9964 q^{37}+5922 q^{36}+16471 q^{35}+15219 q^{34}+2167 q^{33}-11149 q^{32}-15521 q^{31}-11055 q^{30}+3634 q^{29}+14349 q^{28}+14794 q^{27}+3509 q^{26}-8770 q^{25}-13869 q^{24}-11249 q^{23}+1687 q^{22}+11987 q^{21}+13921 q^{20}+4662 q^{19}-6221 q^{18}-11990 q^{17}-11359 q^{16}-578 q^{15}+9173 q^{14}+12821 q^{13}+6111 q^{12}-3022 q^{11}-9519 q^{10}-11259 q^9-3325 q^8+5476 q^7+10899 q^6+7376 q^5+755 q^4-5958 q^3-10084 q^2-5760 q+1096+7547 q^{-1} +7321 q^{-2} +4068 q^{-3} -1572 q^{-4} -7131 q^{-5} -6524 q^{-6} -2724 q^{-7} +3124 q^{-8} +5174 q^{-9} +5400 q^{-10} +2215 q^{-11} -2922 q^{-12} -4862 q^{-13} -4343 q^{-14} -724 q^{-15} +1641 q^{-16} +4096 q^{-17} +3710 q^{-18} +667 q^{-19} -1735 q^{-20} -3270 q^{-21} -2272 q^{-22} -1239 q^{-23} +1390 q^{-24} +2652 q^{-25} +1967 q^{-26} +699 q^{-27} -980 q^{-28} -1493 q^{-29} -1986 q^{-30} -556 q^{-31} +696 q^{-32} +1233 q^{-33} +1215 q^{-34} +485 q^{-35} -97 q^{-36} -1132 q^{-37} -848 q^{-38} -376 q^{-39} +151 q^{-40} +549 q^{-41} +589 q^{-42} +486 q^{-43} -222 q^{-44} -331 q^{-45} -378 q^{-46} -224 q^{-47} -10 q^{-48} +195 q^{-49} +340 q^{-50} +65 q^{-51} +9 q^{-52} -108 q^{-53} -126 q^{-54} -109 q^{-55} -10 q^{-56} +110 q^{-57} +36 q^{-58} +47 q^{-59} +2 q^{-60} -19 q^{-61} -48 q^{-62} -25 q^{-63} +22 q^{-64} + q^{-65} +15 q^{-66} +7 q^{-67} +5 q^{-68} -11 q^{-69} -9 q^{-70} +5 q^{-71} -2 q^{-72} +2 q^{-73} + q^{-74} +2 q^{-75} - q^{-76} -2 q^{-77} + q^{-78} </math> |

coloured_jones_7 = <math>-q^{147}+3 q^{146}-2 q^{145}-2 q^{144}+5 q^{143}-4 q^{142}-q^{141}-3 q^{140}+4 q^{139}+16 q^{138}-15 q^{137}-8 q^{136}+12 q^{135}-13 q^{134}+2 q^{133}-q^{132}+20 q^{131}+46 q^{130}-49 q^{129}-51 q^{128}-8 q^{127}-28 q^{126}+62 q^{125}+73 q^{124}+91 q^{123}+92 q^{122}-189 q^{121}-268 q^{120}-197 q^{119}-63 q^{118}+376 q^{117}+542 q^{116}+472 q^{115}+158 q^{114}-737 q^{113}-1208 q^{112}-1078 q^{111}-286 q^{110}+1401 q^{109}+2345 q^{108}+2165 q^{107}+688 q^{106}-2240 q^{105}-4243 q^{104}-4291 q^{103}-1697 q^{102}+3385 q^{101}+7198 q^{100}+7661 q^{99}+3690 q^{98}-4322 q^{97}-11066 q^{96}-12903 q^{95}-7506 q^{94}+4628 q^{93}+15832 q^{92}+20120 q^{91}+13474 q^{90}-3445 q^{89}-20589 q^{88}-29035 q^{87}-22218 q^{86}-134 q^{85}+24548 q^{84}+39027 q^{83}+33387 q^{82}+6506 q^{81}-26403 q^{80}-48697 q^{79}-46300 q^{78}-15913 q^{77}+25355 q^{76}+56781 q^{75}+59556 q^{74}+27610 q^{73}-21019 q^{72}-61992 q^{71}-71665 q^{70}-40304 q^{69}+13813 q^{68}+63582 q^{67}+81127 q^{66}+52649 q^{65}-4618 q^{64}-61892 q^{63}-87234 q^{62}-62947 q^{61}-4978 q^{60}+57312 q^{59}+89586 q^{58}+70609 q^{57}+13971 q^{56}-51320 q^{55}-89026 q^{54}-75006 q^{53}-21070 q^{52}+44775 q^{51}+86065 q^{50}+76696 q^{49}+26316 q^{48}-38744 q^{47}-82094 q^{46}-76257 q^{45}-29468 q^{44}+33541 q^{43}+77532 q^{42}+74601 q^{41}+31433 q^{40}-29178 q^{39}-73186 q^{38}-72451 q^{37}-32606 q^{36}+25279 q^{35}+68923 q^{34}+70322 q^{33}+33847 q^{32}-21376 q^{31}-64741 q^{30}-68373 q^{29}-35479 q^{28}+16944 q^{27}+60183 q^{26}+66589 q^{25}+37742 q^{24}-11653 q^{23}-54911 q^{22}-64609 q^{21}-40506 q^{20}+5296 q^{19}+48518 q^{18}+62011 q^{17}+43492 q^{16}+2025 q^{15}-40817 q^{14}-58308 q^{13}-46079 q^{12}-9919 q^{11}+31642 q^{10}+53001 q^9+47681 q^8+17915 q^7-21368 q^6-45901 q^5-47466 q^4-25050 q^3+10375 q^2+36815 q+45006+30590 q^{-1} +395 q^{-2} -26306 q^{-3} -39906 q^{-4} -33501 q^{-5} -9964 q^{-6} +14992 q^{-7} +32305 q^{-8} +33373 q^{-9} +17267 q^{-10} -4072 q^{-11} -22958 q^{-12} -30013 q^{-13} -21349 q^{-14} -5224 q^{-15} +12850 q^{-16} +23874 q^{-17} +21982 q^{-18} +11861 q^{-19} -3461 q^{-20} -16144 q^{-21} -19327 q^{-22} -15020 q^{-23} -3962 q^{-24} +8009 q^{-25} +14268 q^{-26} +14978 q^{-27} +8606 q^{-28} -1119 q^{-29} -8295 q^{-30} -12166 q^{-31} -10059 q^{-32} -3738 q^{-33} +2545 q^{-34} +7993 q^{-35} +9113 q^{-36} +5977 q^{-37} +1579 q^{-38} -3635 q^{-39} -6417 q^{-40} -5987 q^{-41} -3895 q^{-42} +182 q^{-43} +3414 q^{-44} +4533 q^{-45} +4272 q^{-46} +1836 q^{-47} -820 q^{-48} -2521 q^{-49} -3480 q^{-50} -2469 q^{-51} -758 q^{-52} +744 q^{-53} +2154 q^{-54} +2148 q^{-55} +1365 q^{-56} +360 q^{-57} -939 q^{-58} -1363 q^{-59} -1246 q^{-60} -849 q^{-61} +103 q^{-62} +659 q^{-63} +856 q^{-64} +795 q^{-65} +232 q^{-66} -125 q^{-67} -387 q^{-68} -584 q^{-69} -341 q^{-70} -90 q^{-71} +141 q^{-72} +321 q^{-73} +210 q^{-74} +143 q^{-75} +47 q^{-76} -137 q^{-77} -145 q^{-78} -124 q^{-79} -47 q^{-80} +59 q^{-81} +40 q^{-82} +53 q^{-83} +62 q^{-84} +2 q^{-85} -20 q^{-86} -40 q^{-87} -30 q^{-88} +10 q^{-89} -2 q^{-90} +3 q^{-91} +17 q^{-92} +7 q^{-93} +4 q^{-94} -8 q^{-95} -9 q^{-96} +3 q^{-97} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 22]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 22]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],
X[18, 14, 1, 13], X[12, 18, 13, 17]]</nowiki></pre></td></tr>
X[18, 14, 1, 13], X[12, 18, 13, 17]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 22]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -9, 8, -6, 7, -5, 9, -8]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 22]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 22]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, 14, 2, 16, 18, 6, 12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -9, 8, -6, 7, -5, 9, -8]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 22]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, 2, -1, 2, -3, 2, 2, 2, -3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 22]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 22]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 16, 18, 6, 12]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 22]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_22_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 22]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 22]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, {4, 7}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, 2, -1, 2, -3, 2, 2, 2, -3}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 22]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 10 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 22]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 22]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_22_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 22]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, {4, 7}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 22]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 10 2 3
-11 + t - -- + -- + 10 t - 5 t + t
-11 + t - -- + -- + 10 t - 5 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 22]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 22]][z]</nowiki></code></td></tr>
1 - z + z + z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 22], Knot[11, NonAlternating, 128]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 - z + z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 22]], KnotSignature[Knot[9, 22]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{43, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 22]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 4 2 3 4 5 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 22], Knot[11, NonAlternating, 128]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 22]], KnotSignature[Knot[9, 22]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{43, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 22]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 4 2 3 4 5 6
-6 + q - -- + - + 7 q - 7 q + 7 q - 5 q + 3 q - q
-6 + q - -- + - + 7 q - 7 q + 7 q - 5 q + 3 q - q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 22], Knot[11, NonAlternating, 3]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 22]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -4 2 4 6 10 14 16 18
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 22], Knot[11, NonAlternating, 3]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 22]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 -4 2 4 6 10 14 16 18
-1 + q + q + q - -- - q + 3 q + 2 q - q + q - q
-1 + q + q + q - -- - q + 3 q + 2 q - q + q - q
2
2
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 22]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 22]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4
-4 4 2 2 2 z 6 z 2 2 4 z 4 z
-4 4 2 2 2 z 6 z 2 2 4 z 4 z
-4 - a + -- + 2 a - 6 z - ---- + ---- + a z - 2 z - -- + ---- +
-4 - a + -- + 2 a - 6 z - ---- + ---- + a z - 2 z - -- + ---- +
Line 154: Line 191:
--
--
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 22]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 22]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
-4 4 2 z z 2 z 2 z 5 z
-4 4 2 z z 2 z 2 z 5 z
-4 - a - -- - 2 a + -- + -- - --- - 2 a z + 16 z - -- + ---- +
-4 - a - -- - 2 a + -- + -- - --- - 2 a z + 16 z - -- + ---- +
Line 179: Line 220:
---- + a z + ---- + ---- + 2 a z + z + --
---- + a z + ---- + ---- + 2 a z + z + --
2 3 a 2
2 3 a 2
a a a</nowiki></pre></td></tr>
a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 22]], Vassiliev[3][Knot[9, 22]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 22]], Vassiliev[3][Knot[9, 22]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 22]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 3 1 3 3 q
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 22]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 1 3 3 q
4 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
4 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 3 3 3 3 2 2 q t t
7 4 5 3 3 3 3 2 2 q t t
Line 194: Line 243:
11 4 13 5
11 4 13 5
2 q t + q t</nowiki></pre></td></tr>
2 q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 22], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 -8 7 6 8 20 7 23 33
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 22], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 -8 7 6 8 20 7 23 33
-1 + q - -- - q + -- - -- - -- + -- - -- - -- + -- - 40 q +
-1 + q - -- - q + -- - -- - -- + -- - -- - -- + -- - 40 q +
9 7 6 5 4 3 2 q
9 7 6 5 4 3 2 q
Line 206: Line 259:
10 11 12 13 14 15 16 17
10 11 12 13 14 15 16 17
33 q + 14 q + 10 q - 14 q + 5 q + 2 q - 3 q + q</nowiki></pre></td></tr>
33 q + 14 q + 10 q - 14 q + 5 q + 2 q - 3 q + q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 16:58, 1 September 2005

9 21.gif

9_21

9 23.gif

9_23

9 22.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 22's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 22 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
Gauss code 1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -9, 8, -6, 7, -5, 9, -8
Dowker-Thistlethwaite code 4 8 10 14 2 16 18 6 12
Conway Notation [211,3,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 22 ML.gif 9 22 AP.gif
[{6, 12}, {1, 9}, {11, 4}, {12, 10}, {8, 3}, {9, 7}, {5, 8}, {7, 11}, {4, 2}, {3, 6}, {2, 5}, {10, 1}]

[edit Notes on presentations of 9 22]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-8]
Hyperbolic Volume 10.6207
A-Polynomial See Data:9 22/A-polynomial

[edit Notes for 9 22's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 22's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n128,}

Same Jones Polynomial (up to mirroring, ): {K11n3,}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 22. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
13         1-1
11        2 2
9       31 -2
7      42  2
5     33   0
3    44    0
1   34     1
-1  13      -2
-3 13       2
-5 1        -1
-71         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials