9 20: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 20 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,6,-4,8,-9,2,-5,7,-8,3,-6,4,-7,5/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=20|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,6,-4,8,-9,2,-5,7,-8,3,-6,4,-7,5/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_149]], [[K11n26]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = [[K11n90]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_149]], [[K11n26]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[K11n90]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 72: | Line 39: | ||
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^2-2 q-1+7 q^{-1} -5 q^{-2} -8 q^{-3} +18 q^{-4} -5 q^{-5} -21 q^{-6} +29 q^{-7} -36 q^{-9} +35 q^{-10} +7 q^{-11} -45 q^{-12} +33 q^{-13} +14 q^{-14} -43 q^{-15} +25 q^{-16} +14 q^{-17} -30 q^{-18} +15 q^{-19} +7 q^{-20} -14 q^{-21} +6 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} </math> | |
|||
coloured_jones_3 = <math>q^6-2 q^5-q^4+2 q^3+6 q^2-4 q-11+ q^{-1} +21 q^{-2} +3 q^{-3} -27 q^{-4} -17 q^{-5} +38 q^{-6} +29 q^{-7} -37 q^{-8} -50 q^{-9} +39 q^{-10} +65 q^{-11} -28 q^{-12} -87 q^{-13} +23 q^{-14} +96 q^{-15} -4 q^{-16} -113 q^{-17} -6 q^{-18} +114 q^{-19} +28 q^{-20} -123 q^{-21} -41 q^{-22} +120 q^{-23} +57 q^{-24} -115 q^{-25} -67 q^{-26} +105 q^{-27} +71 q^{-28} -90 q^{-29} -70 q^{-30} +76 q^{-31} +58 q^{-32} -57 q^{-33} -47 q^{-34} +44 q^{-35} +32 q^{-36} -31 q^{-37} -20 q^{-38} +21 q^{-39} +12 q^{-40} -15 q^{-41} -5 q^{-42} +8 q^{-43} +2 q^{-44} -3 q^{-45} -2 q^{-46} +3 q^{-47} - q^{-48} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^2-2 q-1+7 q^{-1} -5 q^{-2} -8 q^{-3} +18 q^{-4} -5 q^{-5} -21 q^{-6} +29 q^{-7} -36 q^{-9} +35 q^{-10} +7 q^{-11} -45 q^{-12} +33 q^{-13} +14 q^{-14} -43 q^{-15} +25 q^{-16} +14 q^{-17} -30 q^{-18} +15 q^{-19} +7 q^{-20} -14 q^{-21} +6 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} </math>|J3=<math>q^6-2 q^5-q^4+2 q^3+6 q^2-4 q-11+ q^{-1} +21 q^{-2} +3 q^{-3} -27 q^{-4} -17 q^{-5} +38 q^{-6} +29 q^{-7} -37 q^{-8} -50 q^{-9} +39 q^{-10} +65 q^{-11} -28 q^{-12} -87 q^{-13} +23 q^{-14} +96 q^{-15} -4 q^{-16} -113 q^{-17} -6 q^{-18} +114 q^{-19} +28 q^{-20} -123 q^{-21} -41 q^{-22} +120 q^{-23} +57 q^{-24} -115 q^{-25} -67 q^{-26} +105 q^{-27} +71 q^{-28} -90 q^{-29} -70 q^{-30} +76 q^{-31} +58 q^{-32} -57 q^{-33} -47 q^{-34} +44 q^{-35} +32 q^{-36} -31 q^{-37} -20 q^{-38} +21 q^{-39} +12 q^{-40} -15 q^{-41} -5 q^{-42} +8 q^{-43} +2 q^{-44} -3 q^{-45} -2 q^{-46} +3 q^{-47} - q^{-48} </math>|J4=<math>q^{12}-2 q^{11}-q^{10}+2 q^9+q^8+7 q^7-8 q^6-9 q^5+2 q^3+33 q^2-7 q-25-22 q^{-1} -19 q^{-2} +77 q^{-3} +24 q^{-4} -16 q^{-5} -59 q^{-6} -94 q^{-7} +101 q^{-8} +74 q^{-9} +51 q^{-10} -62 q^{-11} -204 q^{-12} +65 q^{-13} +87 q^{-14} +160 q^{-15} +6 q^{-16} -292 q^{-17} -13 q^{-18} +27 q^{-19} +252 q^{-20} +124 q^{-21} -314 q^{-22} -86 q^{-23} -90 q^{-24} +296 q^{-25} +252 q^{-26} -280 q^{-27} -134 q^{-28} -226 q^{-29} +298 q^{-30} +366 q^{-31} -212 q^{-32} -166 q^{-33} -354 q^{-34} +273 q^{-35} +454 q^{-36} -122 q^{-37} -178 q^{-38} -455 q^{-39} +214 q^{-40} +490 q^{-41} -21 q^{-42} -150 q^{-43} -494 q^{-44} +130 q^{-45} +439 q^{-46} +47 q^{-47} -74 q^{-48} -431 q^{-49} +49 q^{-50} +312 q^{-51} +52 q^{-52} +3 q^{-53} -294 q^{-54} +13 q^{-55} +175 q^{-56} +10 q^{-57} +36 q^{-58} -155 q^{-59} +13 q^{-60} +81 q^{-61} -21 q^{-62} +29 q^{-63} -65 q^{-64} +16 q^{-65} +32 q^{-66} -22 q^{-67} +14 q^{-68} -22 q^{-69} +9 q^{-70} +11 q^{-71} -10 q^{-72} +4 q^{-73} -5 q^{-74} +3 q^{-75} +2 q^{-76} -3 q^{-77} + q^{-78} </math>|J5=<math>q^{20}-2 q^{19}-q^{18}+2 q^{17}+q^{16}+2 q^{15}+3 q^{14}-6 q^{13}-11 q^{12}+6 q^{10}+13 q^9+20 q^8-3 q^7-32 q^6-33 q^5-10 q^4+26 q^3+67 q^2+49 q-24-85 q^{-1} -98 q^{-2} -28 q^{-3} +99 q^{-4} +158 q^{-5} +94 q^{-6} -58 q^{-7} -204 q^{-8} -206 q^{-9} -4 q^{-10} +211 q^{-11} +289 q^{-12} +148 q^{-13} -163 q^{-14} -384 q^{-15} -277 q^{-16} +55 q^{-17} +380 q^{-18} +444 q^{-19} +118 q^{-20} -359 q^{-21} -536 q^{-22} -307 q^{-23} +211 q^{-24} +614 q^{-25} +506 q^{-26} -55 q^{-27} -579 q^{-28} -676 q^{-29} -189 q^{-30} +526 q^{-31} +808 q^{-32} +387 q^{-33} -365 q^{-34} -887 q^{-35} -649 q^{-36} +234 q^{-37} +934 q^{-38} +816 q^{-39} -22 q^{-40} -935 q^{-41} -1043 q^{-42} -131 q^{-43} +939 q^{-44} +1175 q^{-45} +330 q^{-46} -908 q^{-47} -1361 q^{-48} -486 q^{-49} +894 q^{-50} +1482 q^{-51} +667 q^{-52} -847 q^{-53} -1623 q^{-54} -834 q^{-55} +794 q^{-56} +1711 q^{-57} +1004 q^{-58} -698 q^{-59} -1762 q^{-60} -1149 q^{-61} +556 q^{-62} +1745 q^{-63} +1264 q^{-64} -392 q^{-65} -1634 q^{-66} -1326 q^{-67} +203 q^{-68} +1463 q^{-69} +1298 q^{-70} -27 q^{-71} -1211 q^{-72} -1212 q^{-73} -113 q^{-74} +959 q^{-75} +1031 q^{-76} +193 q^{-77} -682 q^{-78} -832 q^{-79} -226 q^{-80} +470 q^{-81} +613 q^{-82} +197 q^{-83} -290 q^{-84} -414 q^{-85} -156 q^{-86} +169 q^{-87} +262 q^{-88} +103 q^{-89} -101 q^{-90} -144 q^{-91} -53 q^{-92} +47 q^{-93} +75 q^{-94} +29 q^{-95} -31 q^{-96} -35 q^{-97} -4 q^{-98} +16 q^{-99} +10 q^{-100} -2 q^{-101} -3 q^{-102} -9 q^{-103} +3 q^{-104} +11 q^{-105} -5 q^{-106} -5 q^{-107} +4 q^{-108} -2 q^{-109} - q^{-110} +5 q^{-111} -3 q^{-112} -2 q^{-113} +3 q^{-114} - q^{-115} </math>|J6=<math>q^{30}-2 q^{29}-q^{28}+2 q^{27}+q^{26}+2 q^{25}-2 q^{24}+5 q^{23}-8 q^{22}-11 q^{21}+3 q^{20}+5 q^{19}+14 q^{18}+3 q^{17}+25 q^{16}-17 q^{15}-41 q^{14}-24 q^{13}-12 q^{12}+27 q^{11}+23 q^{10}+109 q^9+22 q^8-57 q^7-90 q^6-109 q^5-49 q^4-22 q^3+243 q^2+184 q+88-62 q^{-1} -217 q^{-2} -287 q^{-3} -325 q^{-4} +204 q^{-5} +320 q^{-6} +435 q^{-7} +283 q^{-8} -9 q^{-9} -430 q^{-10} -849 q^{-11} -249 q^{-12} +18 q^{-13} +593 q^{-14} +793 q^{-15} +731 q^{-16} +5 q^{-17} -1053 q^{-18} -838 q^{-19} -865 q^{-20} +33 q^{-21} +803 q^{-22} +1568 q^{-23} +1062 q^{-24} -397 q^{-25} -804 q^{-26} -1744 q^{-27} -1183 q^{-28} -186 q^{-29} +1676 q^{-30} +2041 q^{-31} +949 q^{-32} +289 q^{-33} -1778 q^{-34} -2289 q^{-35} -1890 q^{-36} +688 q^{-37} +2133 q^{-38} +2187 q^{-39} +2082 q^{-40} -690 q^{-41} -2542 q^{-42} -3509 q^{-43} -996 q^{-44} +1158 q^{-45} +2661 q^{-46} +3815 q^{-47} +1083 q^{-48} -1848 q^{-49} -4466 q^{-50} -2685 q^{-51} -431 q^{-52} +2345 q^{-53} +5003 q^{-54} +2900 q^{-55} -651 q^{-56} -4768 q^{-57} -3983 q^{-58} -2053 q^{-59} +1658 q^{-60} +5676 q^{-61} +4418 q^{-62} +550 q^{-63} -4773 q^{-64} -4945 q^{-65} -3433 q^{-66} +1016 q^{-67} +6136 q^{-68} +5677 q^{-69} +1565 q^{-70} -4761 q^{-71} -5802 q^{-72} -4645 q^{-73} +475 q^{-74} +6536 q^{-75} +6838 q^{-76} +2552 q^{-77} -4613 q^{-78} -6563 q^{-79} -5846 q^{-80} -262 q^{-81} +6595 q^{-82} +7795 q^{-83} +3705 q^{-84} -3898 q^{-85} -6802 q^{-86} -6858 q^{-87} -1426 q^{-88} +5798 q^{-89} +8017 q^{-90} +4789 q^{-91} -2421 q^{-92} -5975 q^{-93} -7076 q^{-94} -2684 q^{-95} +4049 q^{-96} +6995 q^{-97} +5132 q^{-98} -696 q^{-99} -4123 q^{-100} -6036 q^{-101} -3274 q^{-102} +2024 q^{-103} +4932 q^{-104} +4330 q^{-105} +434 q^{-106} -2061 q^{-107} -4086 q^{-108} -2838 q^{-109} +604 q^{-110} +2741 q^{-111} +2797 q^{-112} +655 q^{-113} -632 q^{-114} -2152 q^{-115} -1811 q^{-116} +37 q^{-117} +1200 q^{-118} +1372 q^{-119} +365 q^{-120} -12 q^{-121} -878 q^{-122} -878 q^{-123} -27 q^{-124} +421 q^{-125} +509 q^{-126} +74 q^{-127} +118 q^{-128} -275 q^{-129} -337 q^{-130} +20 q^{-131} +123 q^{-132} +139 q^{-133} -41 q^{-134} +86 q^{-135} -63 q^{-136} -108 q^{-137} +32 q^{-138} +32 q^{-139} +25 q^{-140} -45 q^{-141} +42 q^{-142} -9 q^{-143} -30 q^{-144} +19 q^{-145} +5 q^{-146} +4 q^{-147} -22 q^{-148} +16 q^{-149} + q^{-150} -10 q^{-151} +8 q^{-152} - q^{-153} + q^{-154} -5 q^{-155} +3 q^{-156} +2 q^{-157} -3 q^{-158} + q^{-159} </math>|J7=<math>q^{42}-2 q^{41}-q^{40}+2 q^{39}+q^{38}+2 q^{37}-2 q^{36}+3 q^{34}-8 q^{33}-8 q^{32}+2 q^{31}+5 q^{30}+16 q^{29}+5 q^{28}+q^{27}+14 q^{26}-23 q^{25}-36 q^{24}-27 q^{23}-14 q^{22}+40 q^{21}+41 q^{20}+42 q^{19}+78 q^{18}-69 q^{16}-112 q^{15}-153 q^{14}-32 q^{13}+31 q^{12}+104 q^{11}+267 q^{10}+202 q^9+88 q^8-98 q^7-371 q^6-348 q^5-296 q^4-127 q^3+347 q^2+536 q+633+471 q^{-1} -158 q^{-2} -528 q^{-3} -909 q^{-4} -1003 q^{-5} -343 q^{-6} +262 q^{-7} +1027 q^{-8} +1527 q^{-9} +1042 q^{-10} +407 q^{-11} -740 q^{-12} -1855 q^{-13} -1795 q^{-14} -1400 q^{-15} -67 q^{-16} +1661 q^{-17} +2346 q^{-18} +2576 q^{-19} +1350 q^{-20} -880 q^{-21} -2302 q^{-22} -3469 q^{-23} -2945 q^{-24} -678 q^{-25} +1477 q^{-26} +3901 q^{-27} +4430 q^{-28} +2558 q^{-29} +225 q^{-30} -3270 q^{-31} -5354 q^{-32} -4701 q^{-33} -2643 q^{-34} +1750 q^{-35} +5395 q^{-36} +6267 q^{-37} +5374 q^{-38} +877 q^{-39} -4237 q^{-40} -7151 q^{-41} -8021 q^{-42} -4017 q^{-43} +1983 q^{-44} +6786 q^{-45} +10027 q^{-46} +7477 q^{-47} +1237 q^{-48} -5317 q^{-49} -11107 q^{-50} -10603 q^{-51} -4985 q^{-52} +2639 q^{-53} +11066 q^{-54} +13216 q^{-55} +8885 q^{-56} +726 q^{-57} -9928 q^{-58} -14829 q^{-59} -12558 q^{-60} -4718 q^{-61} +7866 q^{-62} +15709 q^{-63} +15733 q^{-64} +8624 q^{-65} -5173 q^{-66} -15529 q^{-67} -18237 q^{-68} -12589 q^{-69} +2095 q^{-70} +14934 q^{-71} +20144 q^{-72} +15948 q^{-73} +969 q^{-74} -13680 q^{-75} -21411 q^{-76} -19067 q^{-77} -3977 q^{-78} +12473 q^{-79} +22377 q^{-80} +21542 q^{-81} +6560 q^{-82} -11132 q^{-83} -23000 q^{-84} -23780 q^{-85} -8926 q^{-86} +10107 q^{-87} +23703 q^{-88} +25666 q^{-89} +10835 q^{-90} -9234 q^{-91} -24359 q^{-92} -27500 q^{-93} -12663 q^{-94} +8611 q^{-95} +25234 q^{-96} +29289 q^{-97} +14367 q^{-98} -8002 q^{-99} -26076 q^{-100} -31165 q^{-101} -16233 q^{-102} +7241 q^{-103} +26777 q^{-104} +33006 q^{-105} +18333 q^{-106} -6020 q^{-107} -27075 q^{-108} -34654 q^{-109} -20609 q^{-110} +4190 q^{-111} +26566 q^{-112} +35774 q^{-113} +23007 q^{-114} -1698 q^{-115} -25097 q^{-116} -36023 q^{-117} -25085 q^{-118} -1340 q^{-119} +22486 q^{-120} +35116 q^{-121} +26516 q^{-122} +4549 q^{-123} -18913 q^{-124} -32827 q^{-125} -26913 q^{-126} -7552 q^{-127} +14704 q^{-128} +29362 q^{-129} +26036 q^{-130} +9756 q^{-131} -10333 q^{-132} -24876 q^{-133} -23885 q^{-134} -11045 q^{-135} +6306 q^{-136} +20052 q^{-137} +20748 q^{-138} +11104 q^{-139} -3086 q^{-140} -15200 q^{-141} -16953 q^{-142} -10261 q^{-143} +730 q^{-144} +10941 q^{-145} +13142 q^{-146} +8685 q^{-147} +584 q^{-148} -7446 q^{-149} -9521 q^{-150} -6816 q^{-151} -1223 q^{-152} +4803 q^{-153} +6555 q^{-154} +5001 q^{-155} +1293 q^{-156} -3000 q^{-157} -4253 q^{-158} -3373 q^{-159} -1084 q^{-160} +1769 q^{-161} +2570 q^{-162} +2169 q^{-163} +843 q^{-164} -1064 q^{-165} -1513 q^{-166} -1265 q^{-167} -526 q^{-168} +610 q^{-169} +775 q^{-170} +701 q^{-171} +358 q^{-172} -354 q^{-173} -407 q^{-174} -363 q^{-175} -191 q^{-176} +225 q^{-177} +170 q^{-178} +147 q^{-179} +109 q^{-180} -110 q^{-181} -56 q^{-182} -82 q^{-183} -68 q^{-184} +92 q^{-185} +22 q^{-186} +2 q^{-187} +24 q^{-188} -29 q^{-189} +17 q^{-190} -17 q^{-191} -29 q^{-192} +38 q^{-193} - q^{-194} -12 q^{-195} +3 q^{-196} -6 q^{-197} +15 q^{-198} -5 q^{-199} -12 q^{-200} +14 q^{-201} -2 q^{-202} -5 q^{-203} + q^{-204} - q^{-205} +5 q^{-206} -3 q^{-207} -2 q^{-208} +3 q^{-209} - q^{-210} </math>}} |
|||
coloured_jones_4 = <math>q^{12}-2 q^{11}-q^{10}+2 q^9+q^8+7 q^7-8 q^6-9 q^5+2 q^3+33 q^2-7 q-25-22 q^{-1} -19 q^{-2} +77 q^{-3} +24 q^{-4} -16 q^{-5} -59 q^{-6} -94 q^{-7} +101 q^{-8} +74 q^{-9} +51 q^{-10} -62 q^{-11} -204 q^{-12} +65 q^{-13} +87 q^{-14} +160 q^{-15} +6 q^{-16} -292 q^{-17} -13 q^{-18} +27 q^{-19} +252 q^{-20} +124 q^{-21} -314 q^{-22} -86 q^{-23} -90 q^{-24} +296 q^{-25} +252 q^{-26} -280 q^{-27} -134 q^{-28} -226 q^{-29} +298 q^{-30} +366 q^{-31} -212 q^{-32} -166 q^{-33} -354 q^{-34} +273 q^{-35} +454 q^{-36} -122 q^{-37} -178 q^{-38} -455 q^{-39} +214 q^{-40} +490 q^{-41} -21 q^{-42} -150 q^{-43} -494 q^{-44} +130 q^{-45} +439 q^{-46} +47 q^{-47} -74 q^{-48} -431 q^{-49} +49 q^{-50} +312 q^{-51} +52 q^{-52} +3 q^{-53} -294 q^{-54} +13 q^{-55} +175 q^{-56} +10 q^{-57} +36 q^{-58} -155 q^{-59} +13 q^{-60} +81 q^{-61} -21 q^{-62} +29 q^{-63} -65 q^{-64} +16 q^{-65} +32 q^{-66} -22 q^{-67} +14 q^{-68} -22 q^{-69} +9 q^{-70} +11 q^{-71} -10 q^{-72} +4 q^{-73} -5 q^{-74} +3 q^{-75} +2 q^{-76} -3 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_5 = <math>q^{20}-2 q^{19}-q^{18}+2 q^{17}+q^{16}+2 q^{15}+3 q^{14}-6 q^{13}-11 q^{12}+6 q^{10}+13 q^9+20 q^8-3 q^7-32 q^6-33 q^5-10 q^4+26 q^3+67 q^2+49 q-24-85 q^{-1} -98 q^{-2} -28 q^{-3} +99 q^{-4} +158 q^{-5} +94 q^{-6} -58 q^{-7} -204 q^{-8} -206 q^{-9} -4 q^{-10} +211 q^{-11} +289 q^{-12} +148 q^{-13} -163 q^{-14} -384 q^{-15} -277 q^{-16} +55 q^{-17} +380 q^{-18} +444 q^{-19} +118 q^{-20} -359 q^{-21} -536 q^{-22} -307 q^{-23} +211 q^{-24} +614 q^{-25} +506 q^{-26} -55 q^{-27} -579 q^{-28} -676 q^{-29} -189 q^{-30} +526 q^{-31} +808 q^{-32} +387 q^{-33} -365 q^{-34} -887 q^{-35} -649 q^{-36} +234 q^{-37} +934 q^{-38} +816 q^{-39} -22 q^{-40} -935 q^{-41} -1043 q^{-42} -131 q^{-43} +939 q^{-44} +1175 q^{-45} +330 q^{-46} -908 q^{-47} -1361 q^{-48} -486 q^{-49} +894 q^{-50} +1482 q^{-51} +667 q^{-52} -847 q^{-53} -1623 q^{-54} -834 q^{-55} +794 q^{-56} +1711 q^{-57} +1004 q^{-58} -698 q^{-59} -1762 q^{-60} -1149 q^{-61} +556 q^{-62} +1745 q^{-63} +1264 q^{-64} -392 q^{-65} -1634 q^{-66} -1326 q^{-67} +203 q^{-68} +1463 q^{-69} +1298 q^{-70} -27 q^{-71} -1211 q^{-72} -1212 q^{-73} -113 q^{-74} +959 q^{-75} +1031 q^{-76} +193 q^{-77} -682 q^{-78} -832 q^{-79} -226 q^{-80} +470 q^{-81} +613 q^{-82} +197 q^{-83} -290 q^{-84} -414 q^{-85} -156 q^{-86} +169 q^{-87} +262 q^{-88} +103 q^{-89} -101 q^{-90} -144 q^{-91} -53 q^{-92} +47 q^{-93} +75 q^{-94} +29 q^{-95} -31 q^{-96} -35 q^{-97} -4 q^{-98} +16 q^{-99} +10 q^{-100} -2 q^{-101} -3 q^{-102} -9 q^{-103} +3 q^{-104} +11 q^{-105} -5 q^{-106} -5 q^{-107} +4 q^{-108} -2 q^{-109} - q^{-110} +5 q^{-111} -3 q^{-112} -2 q^{-113} +3 q^{-114} - q^{-115} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{30}-2 q^{29}-q^{28}+2 q^{27}+q^{26}+2 q^{25}-2 q^{24}+5 q^{23}-8 q^{22}-11 q^{21}+3 q^{20}+5 q^{19}+14 q^{18}+3 q^{17}+25 q^{16}-17 q^{15}-41 q^{14}-24 q^{13}-12 q^{12}+27 q^{11}+23 q^{10}+109 q^9+22 q^8-57 q^7-90 q^6-109 q^5-49 q^4-22 q^3+243 q^2+184 q+88-62 q^{-1} -217 q^{-2} -287 q^{-3} -325 q^{-4} +204 q^{-5} +320 q^{-6} +435 q^{-7} +283 q^{-8} -9 q^{-9} -430 q^{-10} -849 q^{-11} -249 q^{-12} +18 q^{-13} +593 q^{-14} +793 q^{-15} +731 q^{-16} +5 q^{-17} -1053 q^{-18} -838 q^{-19} -865 q^{-20} +33 q^{-21} +803 q^{-22} +1568 q^{-23} +1062 q^{-24} -397 q^{-25} -804 q^{-26} -1744 q^{-27} -1183 q^{-28} -186 q^{-29} +1676 q^{-30} +2041 q^{-31} +949 q^{-32} +289 q^{-33} -1778 q^{-34} -2289 q^{-35} -1890 q^{-36} +688 q^{-37} +2133 q^{-38} +2187 q^{-39} +2082 q^{-40} -690 q^{-41} -2542 q^{-42} -3509 q^{-43} -996 q^{-44} +1158 q^{-45} +2661 q^{-46} +3815 q^{-47} +1083 q^{-48} -1848 q^{-49} -4466 q^{-50} -2685 q^{-51} -431 q^{-52} +2345 q^{-53} +5003 q^{-54} +2900 q^{-55} -651 q^{-56} -4768 q^{-57} -3983 q^{-58} -2053 q^{-59} +1658 q^{-60} +5676 q^{-61} +4418 q^{-62} +550 q^{-63} -4773 q^{-64} -4945 q^{-65} -3433 q^{-66} +1016 q^{-67} +6136 q^{-68} +5677 q^{-69} +1565 q^{-70} -4761 q^{-71} -5802 q^{-72} -4645 q^{-73} +475 q^{-74} +6536 q^{-75} +6838 q^{-76} +2552 q^{-77} -4613 q^{-78} -6563 q^{-79} -5846 q^{-80} -262 q^{-81} +6595 q^{-82} +7795 q^{-83} +3705 q^{-84} -3898 q^{-85} -6802 q^{-86} -6858 q^{-87} -1426 q^{-88} +5798 q^{-89} +8017 q^{-90} +4789 q^{-91} -2421 q^{-92} -5975 q^{-93} -7076 q^{-94} -2684 q^{-95} +4049 q^{-96} +6995 q^{-97} +5132 q^{-98} -696 q^{-99} -4123 q^{-100} -6036 q^{-101} -3274 q^{-102} +2024 q^{-103} +4932 q^{-104} +4330 q^{-105} +434 q^{-106} -2061 q^{-107} -4086 q^{-108} -2838 q^{-109} +604 q^{-110} +2741 q^{-111} +2797 q^{-112} +655 q^{-113} -632 q^{-114} -2152 q^{-115} -1811 q^{-116} +37 q^{-117} +1200 q^{-118} +1372 q^{-119} +365 q^{-120} -12 q^{-121} -878 q^{-122} -878 q^{-123} -27 q^{-124} +421 q^{-125} +509 q^{-126} +74 q^{-127} +118 q^{-128} -275 q^{-129} -337 q^{-130} +20 q^{-131} +123 q^{-132} +139 q^{-133} -41 q^{-134} +86 q^{-135} -63 q^{-136} -108 q^{-137} +32 q^{-138} +32 q^{-139} +25 q^{-140} -45 q^{-141} +42 q^{-142} -9 q^{-143} -30 q^{-144} +19 q^{-145} +5 q^{-146} +4 q^{-147} -22 q^{-148} +16 q^{-149} + q^{-150} -10 q^{-151} +8 q^{-152} - q^{-153} + q^{-154} -5 q^{-155} +3 q^{-156} +2 q^{-157} -3 q^{-158} + q^{-159} </math> | |
|||
coloured_jones_7 = <math>q^{42}-2 q^{41}-q^{40}+2 q^{39}+q^{38}+2 q^{37}-2 q^{36}+3 q^{34}-8 q^{33}-8 q^{32}+2 q^{31}+5 q^{30}+16 q^{29}+5 q^{28}+q^{27}+14 q^{26}-23 q^{25}-36 q^{24}-27 q^{23}-14 q^{22}+40 q^{21}+41 q^{20}+42 q^{19}+78 q^{18}-69 q^{16}-112 q^{15}-153 q^{14}-32 q^{13}+31 q^{12}+104 q^{11}+267 q^{10}+202 q^9+88 q^8-98 q^7-371 q^6-348 q^5-296 q^4-127 q^3+347 q^2+536 q+633+471 q^{-1} -158 q^{-2} -528 q^{-3} -909 q^{-4} -1003 q^{-5} -343 q^{-6} +262 q^{-7} +1027 q^{-8} +1527 q^{-9} +1042 q^{-10} +407 q^{-11} -740 q^{-12} -1855 q^{-13} -1795 q^{-14} -1400 q^{-15} -67 q^{-16} +1661 q^{-17} +2346 q^{-18} +2576 q^{-19} +1350 q^{-20} -880 q^{-21} -2302 q^{-22} -3469 q^{-23} -2945 q^{-24} -678 q^{-25} +1477 q^{-26} +3901 q^{-27} +4430 q^{-28} +2558 q^{-29} +225 q^{-30} -3270 q^{-31} -5354 q^{-32} -4701 q^{-33} -2643 q^{-34} +1750 q^{-35} +5395 q^{-36} +6267 q^{-37} +5374 q^{-38} +877 q^{-39} -4237 q^{-40} -7151 q^{-41} -8021 q^{-42} -4017 q^{-43} +1983 q^{-44} +6786 q^{-45} +10027 q^{-46} +7477 q^{-47} +1237 q^{-48} -5317 q^{-49} -11107 q^{-50} -10603 q^{-51} -4985 q^{-52} +2639 q^{-53} +11066 q^{-54} +13216 q^{-55} +8885 q^{-56} +726 q^{-57} -9928 q^{-58} -14829 q^{-59} -12558 q^{-60} -4718 q^{-61} +7866 q^{-62} +15709 q^{-63} +15733 q^{-64} +8624 q^{-65} -5173 q^{-66} -15529 q^{-67} -18237 q^{-68} -12589 q^{-69} +2095 q^{-70} +14934 q^{-71} +20144 q^{-72} +15948 q^{-73} +969 q^{-74} -13680 q^{-75} -21411 q^{-76} -19067 q^{-77} -3977 q^{-78} +12473 q^{-79} +22377 q^{-80} +21542 q^{-81} +6560 q^{-82} -11132 q^{-83} -23000 q^{-84} -23780 q^{-85} -8926 q^{-86} +10107 q^{-87} +23703 q^{-88} +25666 q^{-89} +10835 q^{-90} -9234 q^{-91} -24359 q^{-92} -27500 q^{-93} -12663 q^{-94} +8611 q^{-95} +25234 q^{-96} +29289 q^{-97} +14367 q^{-98} -8002 q^{-99} -26076 q^{-100} -31165 q^{-101} -16233 q^{-102} +7241 q^{-103} +26777 q^{-104} +33006 q^{-105} +18333 q^{-106} -6020 q^{-107} -27075 q^{-108} -34654 q^{-109} -20609 q^{-110} +4190 q^{-111} +26566 q^{-112} +35774 q^{-113} +23007 q^{-114} -1698 q^{-115} -25097 q^{-116} -36023 q^{-117} -25085 q^{-118} -1340 q^{-119} +22486 q^{-120} +35116 q^{-121} +26516 q^{-122} +4549 q^{-123} -18913 q^{-124} -32827 q^{-125} -26913 q^{-126} -7552 q^{-127} +14704 q^{-128} +29362 q^{-129} +26036 q^{-130} +9756 q^{-131} -10333 q^{-132} -24876 q^{-133} -23885 q^{-134} -11045 q^{-135} +6306 q^{-136} +20052 q^{-137} +20748 q^{-138} +11104 q^{-139} -3086 q^{-140} -15200 q^{-141} -16953 q^{-142} -10261 q^{-143} +730 q^{-144} +10941 q^{-145} +13142 q^{-146} +8685 q^{-147} +584 q^{-148} -7446 q^{-149} -9521 q^{-150} -6816 q^{-151} -1223 q^{-152} +4803 q^{-153} +6555 q^{-154} +5001 q^{-155} +1293 q^{-156} -3000 q^{-157} -4253 q^{-158} -3373 q^{-159} -1084 q^{-160} +1769 q^{-161} +2570 q^{-162} +2169 q^{-163} +843 q^{-164} -1064 q^{-165} -1513 q^{-166} -1265 q^{-167} -526 q^{-168} +610 q^{-169} +775 q^{-170} +701 q^{-171} +358 q^{-172} -354 q^{-173} -407 q^{-174} -363 q^{-175} -191 q^{-176} +225 q^{-177} +170 q^{-178} +147 q^{-179} +109 q^{-180} -110 q^{-181} -56 q^{-182} -82 q^{-183} -68 q^{-184} +92 q^{-185} +22 q^{-186} +2 q^{-187} +24 q^{-188} -29 q^{-189} +17 q^{-190} -17 q^{-191} -29 q^{-192} +38 q^{-193} - q^{-194} -12 q^{-195} +3 q^{-196} -6 q^{-197} +15 q^{-198} -5 q^{-199} -12 q^{-200} +14 q^{-201} -2 q^{-202} -5 q^{-203} + q^{-204} - q^{-205} +5 q^{-206} -3 q^{-207} -2 q^{-208} +3 q^{-209} - q^{-210} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 20]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
X[11, 1, 12, 18], X[15, 6, 16, 7], X[17, 13, 18, 12], |
X[11, 1, 12, 18], X[15, 6, 16, 7], X[17, 13, 18, 12], |
||
X[13, 8, 14, 9], X[9, 2, 10, 3]]</nowiki></ |
X[13, 8, 14, 9], X[9, 2, 10, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 20]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 20]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 20]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, 2, -1, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 16, 2, 18, 8, 6, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 20]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_20_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 20]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, 2, -1, -3, 2, -3, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 20]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 9 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 20]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_20_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 20]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 20]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 9 2 3 |
|||
11 - t + -- - - - 9 t + 5 t - t |
11 - t + -- - - - 9 t + 5 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 20]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 20]][z]</nowiki></code></td></tr> |
|||
1 + 2 z - z - z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 2 z - z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 20]], KnotSignature[Knot[9, 20]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{41, -4}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 3 5 6 7 7 5 4 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 20], Knot[10, 149], Knot[11, NonAlternating, 26]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 20]], KnotSignature[Knot[9, 20]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{41, -4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 20]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 5 6 7 7 5 4 2 |
|||
1 - q + -- - -- + -- - -- + -- - -- + -- - - |
1 - q + -- - -- + -- - -- + -- - -- + -- - - |
||
8 7 6 5 4 3 2 q |
8 7 6 5 4 3 2 q |
||
q q q q q q q</nowiki></ |
q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 20]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 20], Knot[11, NonAlternating, 90]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 20]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -28 -24 -22 -20 -18 -14 -12 2 -8 -6 |
|||
1 - q + q - q + q - q + q - q + --- - q + q + |
1 - q + q - q + q - q + q - q + --- - q + q + |
||
10 |
10 |
||
Line 144: | Line 177: | ||
-4 |
-4 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 20]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 20]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 2 2 4 2 6 2 8 2 2 4 |
|||
2 a - 2 a + 2 a - a + 3 a z - 5 a z + 5 a z - a z + a z - |
2 a - 2 a + 2 a - a + 3 a z - 5 a z + 5 a z - a z + a z - |
||
4 4 6 4 4 6 |
4 4 6 4 4 6 |
||
4 a z + 2 a z - a z</nowiki></ |
4 a z + 2 a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 20]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 20]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 7 9 2 2 4 2 |
|||
-2 a - 2 a - 2 a - a + 2 a z + 2 a z + 5 a z + 11 a z + |
-2 a - 2 a - 2 a - a + 2 a z + 2 a z + 5 a z + 11 a z + |
||
Line 167: | Line 208: | ||
3 7 5 7 7 7 4 8 6 8 |
3 7 5 7 7 7 4 8 6 8 |
||
2 a z + 5 a z + 3 a z + a z + a z</nowiki></ |
2 a z + 5 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 20]], Vassiliev[3][Knot[9, 20]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 20]], Vassiliev[3][Knot[9, 20]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 20]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 20]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 3 1 2 1 3 2 3 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
5 3 19 7 17 6 15 6 15 5 13 5 13 4 |
5 3 19 7 17 6 15 6 15 5 13 5 13 4 |
||
Line 181: | Line 230: | ||
------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + - + q t |
------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + - + q t |
||
11 4 11 3 9 3 9 2 7 2 7 5 3 q |
11 4 11 3 9 3 9 2 7 2 7 5 3 q |
||
q t q t q t q t q t q t q t q</nowiki></ |
q t q t q t q t q t q t q t q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 20], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 20], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -25 3 2 6 14 7 15 30 14 25 43 |
|||
-1 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + |
-1 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + |
||
24 23 22 21 20 19 18 17 16 15 |
24 23 22 21 20 19 18 17 16 15 |
||
Line 195: | Line 248: | ||
2 |
2 |
||
2 q + q</nowiki></ |
2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X11,1,12,18 X15,6,16,7 X17,13,18,12 X13,8,14,9 X9,2,10,3 |
Gauss code | -1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5 |
Dowker-Thistlethwaite code | 4 10 14 16 2 18 8 6 12 |
Conway Notation | [31212] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 4}, {3, 5}, {4, 8}, {6, 9}, {5, 7}, {11, 6}, {7, 1}] |
[edit Notes on presentations of 9 20]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 20"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X11,1,12,18 X15,6,16,7 X17,13,18,12 X13,8,14,9 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 16 2 18 8 6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31212] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 4}, {3, 5}, {4, 8}, {6, 9}, {5, 7}, {11, 6}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 20"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 41, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_149, K11n26,}
Same Jones Polynomial (up to mirroring, ): {K11n90,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 20"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_149, K11n26,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n90,} |
Vassiliev invariants
V2 and V3: | (2, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|