9 6: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- provide an anchor so we can return to the top of the page -->
k = 6 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,6,-4,7,-5,8,-9,2,-8,3,-6,4,-7,5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=6|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,6,-4,7,-5,8,-9,2,-8,3,-6,4,-7,5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
Line 71: Line 38:
<tr align=center><td>-23</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -3 q^{-11} +9 q^{-12} -4 q^{-13} -8 q^{-14} +12 q^{-15} -2 q^{-16} -13 q^{-17} +14 q^{-18} + q^{-19} -16 q^{-20} +14 q^{-21} +3 q^{-22} -16 q^{-23} +11 q^{-24} +3 q^{-25} -11 q^{-26} +7 q^{-27} + q^{-28} -5 q^{-29} +4 q^{-30} -2 q^{-32} + q^{-33} </math> |

coloured_jones_3 = <math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} +2 q^{-16} +9 q^{-17} -4 q^{-18} -9 q^{-19} -2 q^{-20} +17 q^{-21} -14 q^{-23} -9 q^{-24} +18 q^{-25} +8 q^{-26} -12 q^{-27} -16 q^{-28} +14 q^{-29} +13 q^{-30} -6 q^{-31} -17 q^{-32} +5 q^{-33} +15 q^{-34} -16 q^{-36} -4 q^{-37} +16 q^{-38} +5 q^{-39} -13 q^{-40} -10 q^{-41} +14 q^{-42} +9 q^{-43} -10 q^{-44} -9 q^{-45} +8 q^{-46} +6 q^{-47} -4 q^{-48} -3 q^{-49} +3 q^{-50} - q^{-51} -2 q^{-52} +3 q^{-53} +2 q^{-54} -4 q^{-55} -2 q^{-56} +3 q^{-57} +3 q^{-58} -3 q^{-59} - q^{-60} +2 q^{-62} - q^{-63} </math> |
{{Display Coloured Jones|J2=<math> q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -3 q^{-11} +9 q^{-12} -4 q^{-13} -8 q^{-14} +12 q^{-15} -2 q^{-16} -13 q^{-17} +14 q^{-18} + q^{-19} -16 q^{-20} +14 q^{-21} +3 q^{-22} -16 q^{-23} +11 q^{-24} +3 q^{-25} -11 q^{-26} +7 q^{-27} + q^{-28} -5 q^{-29} +4 q^{-30} -2 q^{-32} + q^{-33} </math>|J3=<math> q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} +2 q^{-16} +9 q^{-17} -4 q^{-18} -9 q^{-19} -2 q^{-20} +17 q^{-21} -14 q^{-23} -9 q^{-24} +18 q^{-25} +8 q^{-26} -12 q^{-27} -16 q^{-28} +14 q^{-29} +13 q^{-30} -6 q^{-31} -17 q^{-32} +5 q^{-33} +15 q^{-34} -16 q^{-36} -4 q^{-37} +16 q^{-38} +5 q^{-39} -13 q^{-40} -10 q^{-41} +14 q^{-42} +9 q^{-43} -10 q^{-44} -9 q^{-45} +8 q^{-46} +6 q^{-47} -4 q^{-48} -3 q^{-49} +3 q^{-50} - q^{-51} -2 q^{-52} +3 q^{-53} +2 q^{-54} -4 q^{-55} -2 q^{-56} +3 q^{-57} +3 q^{-58} -3 q^{-59} - q^{-60} +2 q^{-62} - q^{-63} </math>|J4=<math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} + q^{-21} +10 q^{-22} -9 q^{-23} -9 q^{-24} + q^{-25} + q^{-26} +25 q^{-27} -8 q^{-28} -16 q^{-29} -8 q^{-30} -9 q^{-31} +41 q^{-32} - q^{-33} -13 q^{-34} -13 q^{-35} -27 q^{-36} +45 q^{-37} +2 q^{-38} - q^{-39} -4 q^{-40} -40 q^{-41} +40 q^{-42} -9 q^{-43} +4 q^{-44} +15 q^{-45} -36 q^{-46} +35 q^{-47} -32 q^{-48} - q^{-49} +34 q^{-50} -22 q^{-51} +37 q^{-52} -56 q^{-53} -13 q^{-54} +48 q^{-55} -6 q^{-56} +42 q^{-57} -75 q^{-58} -24 q^{-59} +60 q^{-60} +7 q^{-61} +44 q^{-62} -88 q^{-63} -34 q^{-64} +66 q^{-65} +19 q^{-66} +45 q^{-67} -91 q^{-68} -42 q^{-69} +57 q^{-70} +26 q^{-71} +52 q^{-72} -76 q^{-73} -48 q^{-74} +34 q^{-75} +21 q^{-76} +56 q^{-77} -47 q^{-78} -39 q^{-79} +10 q^{-80} +3 q^{-81} +49 q^{-82} -18 q^{-83} -22 q^{-84} -2 q^{-85} -10 q^{-86} +32 q^{-87} -4 q^{-88} -7 q^{-89} -3 q^{-90} -12 q^{-91} +16 q^{-92} - q^{-95} -7 q^{-96} +5 q^{-97} + q^{-99} -2 q^{-101} + q^{-102} </math>|J5=<math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} </math>|J6=<math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} </math>|J7=Not Available}}
coloured_jones_4 = <math> q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} + q^{-21} +10 q^{-22} -9 q^{-23} -9 q^{-24} + q^{-25} + q^{-26} +25 q^{-27} -8 q^{-28} -16 q^{-29} -8 q^{-30} -9 q^{-31} +41 q^{-32} - q^{-33} -13 q^{-34} -13 q^{-35} -27 q^{-36} +45 q^{-37} +2 q^{-38} - q^{-39} -4 q^{-40} -40 q^{-41} +40 q^{-42} -9 q^{-43} +4 q^{-44} +15 q^{-45} -36 q^{-46} +35 q^{-47} -32 q^{-48} - q^{-49} +34 q^{-50} -22 q^{-51} +37 q^{-52} -56 q^{-53} -13 q^{-54} +48 q^{-55} -6 q^{-56} +42 q^{-57} -75 q^{-58} -24 q^{-59} +60 q^{-60} +7 q^{-61} +44 q^{-62} -88 q^{-63} -34 q^{-64} +66 q^{-65} +19 q^{-66} +45 q^{-67} -91 q^{-68} -42 q^{-69} +57 q^{-70} +26 q^{-71} +52 q^{-72} -76 q^{-73} -48 q^{-74} +34 q^{-75} +21 q^{-76} +56 q^{-77} -47 q^{-78} -39 q^{-79} +10 q^{-80} +3 q^{-81} +49 q^{-82} -18 q^{-83} -22 q^{-84} -2 q^{-85} -10 q^{-86} +32 q^{-87} -4 q^{-88} -7 q^{-89} -3 q^{-90} -12 q^{-91} +16 q^{-92} - q^{-95} -7 q^{-96} +5 q^{-97} + q^{-99} -2 q^{-101} + q^{-102} </math> |

coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 6]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 6]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17],
X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11],
X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11],
X[11, 2, 12, 3]]</nowiki></pre></td></tr>
X[11, 2, 12, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 6]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 6]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 6]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 14, 16, 18, 2, 10, 6, 8]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 6]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 6]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 6]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 14, 16, 18, 2, 10, 6, 8]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 6]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 6]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 6]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 5 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 6]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 6]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_6_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 6]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 6]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 5 2 3
-5 + -- - -- + - + 5 t - 4 t + 2 t
-5 + -- - -- + - + 5 t - 4 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 6]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 7 z + 8 z + 2 z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 6]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 6]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 7 z + 8 z + 2 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, -6}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 6]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 3 4 5 4 3 3 -4 -3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 6]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{27, -6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 6]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 2 3 4 5 4 3 3 -4 -3
-q + --- - --- + -- - -- + -- - -- + -- - q + q
-q + --- - --- + -- - -- + -- - -- + -- - q + q
11 10 9 8 7 6 5
11 10 9 8 7 6 5
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 6]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 6]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 2 -22 -20 2 -16 2 -10
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 6]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 6]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -36 2 -22 -20 2 -16 2 -10
-q - --- - q + q + --- + q + --- + q
-q - --- - q + q + --- + q + --- + q
26 18 14
26 18 14
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 6]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 6]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4
3 a - a - a + 7 a z + 3 a z - 3 a z + 5 a z + 4 a z -
3 a - a - a + 7 a z + 3 a z - 3 a z + 5 a z + 4 a z -
10 4 6 6 8 6
10 4 6 6 8 6
a z + a z + a z</nowiki></pre></td></tr>
a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 6]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 11 15 6 2 8 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 6]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 7 9 11 15 6 2 8 2
-3 a - a + a + 2 a z - a z - 2 a z - a z + 7 a z + a z -
-3 a - a + a + 2 a z - a z - 2 a z - a z + 7 a z + a z -
Line 163: Line 204:
12 6 7 7 9 7 11 7 8 8 10 8
12 6 7 7 9 7 11 7 8 8 10 8
2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -18}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 6]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 2 1 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -18}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 6]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 1 1 2 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
25 9 23 8 21 8 21 7 19 7 19 6
25 9 23 8 21 8 21 7 19 7 19 6
Line 182: Line 231:
------ + ----- + ----
------ + ----- + ----
11 2 9 2 7
11 2 9 2 7
q t q t q t</nowiki></pre></td></tr>
q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 6], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -33 2 4 5 -28 7 11 3 11 16 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 6], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -33 2 4 5 -28 7 11 3 11 16 3
q - --- + --- - --- + q + --- - --- + --- + --- - --- + --- +
q - --- + --- - --- + q + --- - --- + --- + --- - --- + --- +
32 30 29 27 26 25 24 23 22
32 30 29 27 26 25 24 23 22
Line 198: Line 251:
--- + -- - q + q
--- + -- - q + q
10 9
10 9
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 16:59, 1 September 2005

9 5.gif

9_5

9 7.gif

9_7

9 6.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 6 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5
Dowker-Thistlethwaite code 4 12 14 16 18 2 10 6 8
Conway Notation [522]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

9 6 ML.gif 9 6 AP.gif
[{11, 2}, {1, 9}, {8, 10}, {9, 11}, {10, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 1}]

[edit Notes on presentations of 9 6]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-16][5]
Hyperbolic Volume 7.2036
A-Polynomial See Data:9 6/A-polynomial

[edit Notes for 9 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (7, -18)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        110
-9       2  2
-11      11  0
-13     32   1
-15    21    -1
-17   23     -1
-19  12      1
-21 12       -1
-23 1        1
-251         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials