10 71: Difference between revisions
| No edit summary | m (Reverted edit of 59.61.233.11, changed back to last version by ScottTestRobot) | ||
| (3 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- This page was  generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> | |||
| <!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! | |||
| <!--  --> <!-- | |||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | |||
|  --> | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | |||
| <!--  --> | |||
| <!--  --> | |||
| {{Rolfsen Knot Page| | {{Rolfsen Knot Page| | ||
| n = 10 | | n = 10 | | ||
| Line 51: | Line 54: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |          <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> | ||
|          </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 71]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12],  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 71]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12],  | |||
|   X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1],  |   X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1],  | ||
|   X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></ |   X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 71]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9,  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 71]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9,  | |||
|   6, -8, 7]</nowiki></ |   6, -8, 7]</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 71]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, 18, 14, 6, 20, 10, 16]</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 71]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | |||
| < | <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> | ||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, 18, 14, 6, 20, 10, 16]</nowiki></code></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 71]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_71_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 71]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 71]][t]</nowiki></pre></td></tr> | |||
| < | <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> | ||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 2, 4, -3, 4}]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 71]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 71]]]</nowiki></code></td></tr> | |||
| <tr align=left><td></td><td>[[Image:10_71_ML.gif]]</td></tr><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 71]]&) /@ { | |||
|                    SymmetryType, UnknottingNumber, ThreeGenus, | |||
|                    BridgeIndex, SuperBridgeIndex, NakanishiIndex | |||
|                   }</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 71]][t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -3   7    18             2    3 | |||
| 25 - t   + -- - -- - 18 t + 7 t  - t | 25 - t   + -- - -- - 18 t + 7 t  - t | ||
|             2   t |             2   t | ||
|            t</nowiki></ |            t</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 71]][z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     2    4    6 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> | |||
| 1 + z  + z  - z</nowiki></pre></td></tr> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 71]][z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 71], Knot[11, NonAlternating, 156],  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     2    4    6 | |||
| 1 + z  + z  - z</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 71], Knot[11, NonAlternating, 156],  | |||
|   Knot[11, NonAlternating, 179]}</nowiki></ |   Knot[11, NonAlternating, 179]}</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]}</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{77, 0}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{77, 0}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 71]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -5   3    6    10   12              2      3      4    5 | |||
| 13 - q   + -- - -- + -- - -- - 12 q + 10 q  - 6 q  + 3 q  - q | 13 - q   + -- - -- + -- - -- - 12 q + 10 q  - 6 q  + 3 q  - q | ||
|             4    3    2   q |             4    3    2   q | ||
|            q    q    q</nowiki></ |            q    q    q</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 71], Knot[10, 104]}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 71], Knot[10, 104]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 71]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -16    -12    2    3     -6    -4   2       2    4    6      8 | |||
| -3 - q    + q    - --- + -- + q   - q   + -- + 2 q  - q  + q  + 3 q  -  | -3 - q    + q    - --- + -- + q   - q   + -- + 2 q  - q  + q  + 3 q  -  | ||
|                     10    8                2 |                     10    8                2 | ||
| Line 101: | Line 183: | ||
|      10    12    16 |      10    12    16 | ||
|   2 q   + q   - q</nowiki></ |   2 q   + q   - q</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 71]][a, z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                    2      2 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 71]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                    2      2 | |||
|       -4   3       2    4      2   z    4 z       2  2    4  2      4 |       -4   3       2    4      2   z    4 z       2  2    4  2      4 | ||
| -3 - a   + -- + 3 a  - a  - 5 z  - -- + ---- + 4 a  z  - a  z  - 3 z  +  | -3 - a   + -- + 3 a  - a  - 5 z  - -- + ---- + 4 a  z  - a  z  - 3 z  +  | ||
| Line 113: | Line 200: | ||
|   ---- + 2 a  z  - z |   ---- + 2 a  z  - z | ||
|     2 |     2 | ||
|    a</nowiki></ |    a</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 71]][a, z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -4   3       2    4   z    z    z          3      5         2 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 71]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -4   3       2    4   z    z    z          3      5         2 | |||
| -3 - a   - -- - 3 a  - a  + -- + -- - - - a z + a  z + a  z + 12 z  +  | -3 - a   - -- - 3 a  - a  + -- + -- - - - a z + a  z + a  z + 12 z  +  | ||
|             2                5    3   a |             2                5    3   a | ||
| Line 142: | Line 234: | ||
|   ---- + ---- + 8 a z  + 4 a  z  + 6 z  + ---- + 3 a  z  + -- + a z |   ---- + ---- + 8 a z  + 4 a  z  + 6 z  + ---- + 3 a  z  + -- + a z | ||
|     3     a                                 2              a |     3     a                                 2              a | ||
|    a                                       a</nowiki></ |    a                                       a</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]}</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 71]][q, t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7           1        2       1       4       2       6       4 | |||
| - + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +  | - + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +  | ||
| q          11  5    9  4    7  4    7  3    5  3    5  2    3  2 | q          11  5    9  4    7  4    7  3    5  3    5  2    3  2 | ||
| Line 157: | Line 259: | ||
|    7  4      9  4    11  5 |    7  4      9  4    11  5 | ||
|   q  t  + 2 q  t  + q   t</nowiki></ |   q  t  + 2 q  t  + q   t</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 71], 2][q]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -15    3     -13    9    17     -10   37   47   12   89   77 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 71], 2][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       -15    3     -13    9    17     -10   37   47   12   89   77 | |||
| 161 + q    - --- + q    + --- - --- + q    + -- - -- - -- + -- - -- -  | 161 + q    - --- + q    + --- - --- + q    + -- - -- - -- + -- - -- -  | ||
|               14           12    11           9    8    7    6    5 |               14           12    11           9    8    7    6    5 | ||
| Line 170: | Line 277: | ||
|       7       8       9    10       11      12    13      14    15 |       7       8       9    10       11      12    13      14    15 | ||
|   12 q  - 47 q  + 37 q  + q   - 17 q   + 9 q   + q   - 3 q   + q</nowiki></ |   12 q  - 47 q  + 37 q  + q   - 17 q   + 9 q   + q   - 3 q   + q</nowiki></code></td></tr> | ||
| </table>  }} | |||
Latest revision as of 18:38, 7 June 2007
|  |  | 
|  (KnotPlot image) | See the full Rolfsen Knot Table. Visit 10 71's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,19,10,18 X15,20,16,1 X19,16,20,17 X17,11,18,10 X7283 | 
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7 | 
| Dowker-Thistlethwaite code | 4 8 12 2 18 14 6 20 10 16 | 
| Conway Notation | [22,21,2+] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
| 
 Length is 10, width is 5, Braid index is 5 |   |  [{12, 4}, {3, 10}, {6, 11}, {10, 12}, {5, 7}, {4, 6}, {8, 5}, {7, 2}, {1, 3}, {2, 9}, {11, 8}, {9, 1}] | 
[edit Notes on presentations of 10 71]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 71"]; | 
| In[4]:= | PD[K] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,19,10,18 X15,20,16,1 X19,16,20,17 X17,11,18,10 X7283 | 
| In[5]:= | GaussCode[K] | 
| Out[5]= | -1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7 | 
| In[6]:= | DTCode[K] | 
| Out[6]= | 4 8 12 2 18 14 6 20 10 16 | 
(The path below may be different on your system)
| In[7]:= | AppendTo[$Path, "C:/bin/LinKnot/"]; | 
| In[8]:= | ConwayNotation[K] | 
| Out[8]= | [22,21,2+] | 
| In[9]:= | br = BR[K] | 
| KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051. | 
| Out[9]= | 
| In[10]:= | {First[br], Crossings[br], BraidIndex[K]} | 
| KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/. | 
| KnotTheory::loading: Loading precomputed data in IndianaData`. | 
| Out[10]= | { 5, 10, 5 } | 
| In[11]:= | Show[BraidPlot[br]] | 
| 
 | 
| Out[11]= | -Graphics- | 
| In[12]:= | Show[DrawMorseLink[K]] | 
| KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
| KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
|   | 
| Out[12]= | -Graphics- | 
| In[13]:= | ap = ArcPresentation[K] | 
| Out[13]= | ArcPresentation[{12, 4}, {3, 10}, {6, 11}, {10, 12}, {5, 7}, {4, 6}, {8, 5}, {7, 2}, {1, 3}, {2, 9}, {11, 8}, {9, 1}] | 
| In[14]:= | Draw[ap] | 
|   | 
| Out[14]= | -Graphics- | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 71"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 77, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n156, K11n179,}
Same Jones Polynomial (up to mirroring, ): {10_104,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 71"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {K11n156, K11n179,} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {10_104,} | 
Vassiliev invariants
| V2 and V3: | (1, 0) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 71. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. | 
 | 







