9 15: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 9 | |
n = 9 | |
||
Line 46: | Line 46: | ||
coloured_jones_5 = <math>-q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+2 q^{102}-9 q^{101}-3 q^{100}+3 q^{99}+2 q^{98}+16 q^{97}+9 q^{96}-20 q^{95}-29 q^{94}-12 q^{93}+11 q^{92}+50 q^{91}+54 q^{90}-11 q^{89}-71 q^{88}-92 q^{87}-40 q^{86}+80 q^{85}+160 q^{84}+104 q^{83}-44 q^{82}-203 q^{81}-234 q^{80}-35 q^{79}+234 q^{78}+343 q^{77}+197 q^{76}-177 q^{75}-483 q^{74}-406 q^{73}+65 q^{72}+552 q^{71}+644 q^{70}+162 q^{69}-568 q^{68}-898 q^{67}-440 q^{66}+505 q^{65}+1102 q^{64}+761 q^{63}-335 q^{62}-1276 q^{61}-1109 q^{60}+146 q^{59}+1372 q^{58}+1410 q^{57}+124 q^{56}-1421 q^{55}-1719 q^{54}-342 q^{53}+1418 q^{52}+1924 q^{51}+616 q^{50}-1401 q^{49}-2136 q^{48}-787 q^{47}+1341 q^{46}+2242 q^{45}+1010 q^{44}-1285 q^{43}-2365 q^{42}-1124 q^{41}+1188 q^{40}+2378 q^{39}+1299 q^{38}-1078 q^{37}-2400 q^{36}-1382 q^{35}+916 q^{34}+2309 q^{33}+1499 q^{32}-720 q^{31}-2188 q^{30}-1539 q^{29}+489 q^{28}+1958 q^{27}+1549 q^{26}-241 q^{25}-1669 q^{24}-1482 q^{23}+q^{22}+1332 q^{21}+1338 q^{20}+193 q^{19}-970 q^{18}-1129 q^{17}-328 q^{16}+630 q^{15}+900 q^{14}+368 q^{13}-357 q^{12}-632 q^{11}-356 q^{10}+144 q^9+423 q^8+291 q^7-39 q^6-228 q^5-209 q^4-32 q^3+120 q^2+128 q+39-38 q^{-1} -71 q^{-2} -41 q^{-3} +17 q^{-4} +26 q^{-5} +19 q^{-6} +13 q^{-7} -13 q^{-8} -17 q^{-9} +2 q^{-10} -2 q^{-11} -2 q^{-12} +12 q^{-13} +2 q^{-14} -6 q^{-15} +3 q^{-16} -3 q^{-17} -5 q^{-18} +4 q^{-19} +2 q^{-20} - q^{-21} + q^{-22} -2 q^{-24} + q^{-25} </math> | |
coloured_jones_5 = <math>-q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+2 q^{102}-9 q^{101}-3 q^{100}+3 q^{99}+2 q^{98}+16 q^{97}+9 q^{96}-20 q^{95}-29 q^{94}-12 q^{93}+11 q^{92}+50 q^{91}+54 q^{90}-11 q^{89}-71 q^{88}-92 q^{87}-40 q^{86}+80 q^{85}+160 q^{84}+104 q^{83}-44 q^{82}-203 q^{81}-234 q^{80}-35 q^{79}+234 q^{78}+343 q^{77}+197 q^{76}-177 q^{75}-483 q^{74}-406 q^{73}+65 q^{72}+552 q^{71}+644 q^{70}+162 q^{69}-568 q^{68}-898 q^{67}-440 q^{66}+505 q^{65}+1102 q^{64}+761 q^{63}-335 q^{62}-1276 q^{61}-1109 q^{60}+146 q^{59}+1372 q^{58}+1410 q^{57}+124 q^{56}-1421 q^{55}-1719 q^{54}-342 q^{53}+1418 q^{52}+1924 q^{51}+616 q^{50}-1401 q^{49}-2136 q^{48}-787 q^{47}+1341 q^{46}+2242 q^{45}+1010 q^{44}-1285 q^{43}-2365 q^{42}-1124 q^{41}+1188 q^{40}+2378 q^{39}+1299 q^{38}-1078 q^{37}-2400 q^{36}-1382 q^{35}+916 q^{34}+2309 q^{33}+1499 q^{32}-720 q^{31}-2188 q^{30}-1539 q^{29}+489 q^{28}+1958 q^{27}+1549 q^{26}-241 q^{25}-1669 q^{24}-1482 q^{23}+q^{22}+1332 q^{21}+1338 q^{20}+193 q^{19}-970 q^{18}-1129 q^{17}-328 q^{16}+630 q^{15}+900 q^{14}+368 q^{13}-357 q^{12}-632 q^{11}-356 q^{10}+144 q^9+423 q^8+291 q^7-39 q^6-228 q^5-209 q^4-32 q^3+120 q^2+128 q+39-38 q^{-1} -71 q^{-2} -41 q^{-3} +17 q^{-4} +26 q^{-5} +19 q^{-6} +13 q^{-7} -13 q^{-8} -17 q^{-9} +2 q^{-10} -2 q^{-11} -2 q^{-12} +12 q^{-13} +2 q^{-14} -6 q^{-15} +3 q^{-16} -3 q^{-17} -5 q^{-18} +4 q^{-19} +2 q^{-20} - q^{-21} + q^{-22} -2 q^{-24} + q^{-25} </math> | |
||
coloured_jones_6 = <math>q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-3 q^{144}+11 q^{143}-q^{142}-2 q^{141}-13 q^{140}+12 q^{139}-14 q^{138}-8 q^{137}+36 q^{136}+14 q^{135}+4 q^{134}-42 q^{133}+9 q^{132}-56 q^{131}-40 q^{130}+78 q^{129}+73 q^{128}+74 q^{127}-47 q^{126}+18 q^{125}-169 q^{124}-189 q^{123}+32 q^{122}+127 q^{121}+245 q^{120}+106 q^{119}+225 q^{118}-239 q^{117}-465 q^{116}-296 q^{115}-103 q^{114}+287 q^{113}+379 q^{112}+870 q^{111}+139 q^{110}-498 q^{109}-797 q^{108}-869 q^{107}-338 q^{106}+251 q^{105}+1722 q^{104}+1220 q^{103}+356 q^{102}-797 q^{101}-1808 q^{100}-1854 q^{99}-973 q^{98}+1961 q^{97}+2517 q^{96}+2241 q^{95}+419 q^{94}-2012 q^{93}-3651 q^{92}-3328 q^{91}+884 q^{90}+3095 q^{89}+4451 q^{88}+2782 q^{87}-882 q^{86}-4793 q^{85}-6017 q^{84}-1336 q^{83}+2457 q^{82}+6087 q^{81}+5471 q^{80}+1273 q^{79}-4876 q^{78}-8170 q^{77}-3863 q^{76}+959 q^{75}+6803 q^{74}+7686 q^{73}+3621 q^{72}-4237 q^{71}-9459 q^{70}-5964 q^{69}-679 q^{68}+6860 q^{67}+9134 q^{66}+5537 q^{65}-3414 q^{64}-10060 q^{63}-7406 q^{62}-2014 q^{61}+6618 q^{60}+9940 q^{59}+6889 q^{58}-2632 q^{57}-10192 q^{56}-8327 q^{55}-3070 q^{54}+6131 q^{53}+10254 q^{52}+7867 q^{51}-1723 q^{50}-9805 q^{49}-8855 q^{48}-4092 q^{47}+5144 q^{46}+9955 q^{45}+8556 q^{44}-408 q^{43}-8580 q^{42}-8795 q^{41}-5116 q^{40}+3405 q^{39}+8681 q^{38}+8653 q^{37}+1237 q^{36}-6307 q^{35}-7713 q^{34}-5715 q^{33}+1143 q^{32}+6283 q^{31}+7664 q^{30}+2591 q^{29}-3415 q^{28}-5504 q^{27}-5290 q^{26}-813 q^{25}+3352 q^{24}+5548 q^{23}+2923 q^{22}-933 q^{21}-2863 q^{20}-3801 q^{19}-1647 q^{18}+976 q^{17}+3078 q^{16}+2182 q^{15}+326 q^{14}-831 q^{13}-2006 q^{12}-1377 q^{11}-174 q^{10}+1227 q^9+1096 q^8+480 q^7+99 q^6-724 q^5-722 q^4-356 q^3+333 q^2+346 q+231+252 q^{-1} -159 q^{-2} -254 q^{-3} -206 q^{-4} +67 q^{-5} +50 q^{-6} +41 q^{-7} +159 q^{-8} -11 q^{-9} -62 q^{-10} -79 q^{-11} +18 q^{-12} -10 q^{-13} -17 q^{-14} +69 q^{-15} +7 q^{-16} -8 q^{-17} -25 q^{-18} +10 q^{-19} -10 q^{-20} -18 q^{-21} +24 q^{-22} +3 q^{-23} +3 q^{-24} -7 q^{-25} +5 q^{-26} -3 q^{-27} -9 q^{-28} +6 q^{-29} +2 q^{-31} - q^{-32} + q^{-33} -2 q^{-35} + q^{-36} </math> | |
coloured_jones_6 = <math>q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-3 q^{144}+11 q^{143}-q^{142}-2 q^{141}-13 q^{140}+12 q^{139}-14 q^{138}-8 q^{137}+36 q^{136}+14 q^{135}+4 q^{134}-42 q^{133}+9 q^{132}-56 q^{131}-40 q^{130}+78 q^{129}+73 q^{128}+74 q^{127}-47 q^{126}+18 q^{125}-169 q^{124}-189 q^{123}+32 q^{122}+127 q^{121}+245 q^{120}+106 q^{119}+225 q^{118}-239 q^{117}-465 q^{116}-296 q^{115}-103 q^{114}+287 q^{113}+379 q^{112}+870 q^{111}+139 q^{110}-498 q^{109}-797 q^{108}-869 q^{107}-338 q^{106}+251 q^{105}+1722 q^{104}+1220 q^{103}+356 q^{102}-797 q^{101}-1808 q^{100}-1854 q^{99}-973 q^{98}+1961 q^{97}+2517 q^{96}+2241 q^{95}+419 q^{94}-2012 q^{93}-3651 q^{92}-3328 q^{91}+884 q^{90}+3095 q^{89}+4451 q^{88}+2782 q^{87}-882 q^{86}-4793 q^{85}-6017 q^{84}-1336 q^{83}+2457 q^{82}+6087 q^{81}+5471 q^{80}+1273 q^{79}-4876 q^{78}-8170 q^{77}-3863 q^{76}+959 q^{75}+6803 q^{74}+7686 q^{73}+3621 q^{72}-4237 q^{71}-9459 q^{70}-5964 q^{69}-679 q^{68}+6860 q^{67}+9134 q^{66}+5537 q^{65}-3414 q^{64}-10060 q^{63}-7406 q^{62}-2014 q^{61}+6618 q^{60}+9940 q^{59}+6889 q^{58}-2632 q^{57}-10192 q^{56}-8327 q^{55}-3070 q^{54}+6131 q^{53}+10254 q^{52}+7867 q^{51}-1723 q^{50}-9805 q^{49}-8855 q^{48}-4092 q^{47}+5144 q^{46}+9955 q^{45}+8556 q^{44}-408 q^{43}-8580 q^{42}-8795 q^{41}-5116 q^{40}+3405 q^{39}+8681 q^{38}+8653 q^{37}+1237 q^{36}-6307 q^{35}-7713 q^{34}-5715 q^{33}+1143 q^{32}+6283 q^{31}+7664 q^{30}+2591 q^{29}-3415 q^{28}-5504 q^{27}-5290 q^{26}-813 q^{25}+3352 q^{24}+5548 q^{23}+2923 q^{22}-933 q^{21}-2863 q^{20}-3801 q^{19}-1647 q^{18}+976 q^{17}+3078 q^{16}+2182 q^{15}+326 q^{14}-831 q^{13}-2006 q^{12}-1377 q^{11}-174 q^{10}+1227 q^9+1096 q^8+480 q^7+99 q^6-724 q^5-722 q^4-356 q^3+333 q^2+346 q+231+252 q^{-1} -159 q^{-2} -254 q^{-3} -206 q^{-4} +67 q^{-5} +50 q^{-6} +41 q^{-7} +159 q^{-8} -11 q^{-9} -62 q^{-10} -79 q^{-11} +18 q^{-12} -10 q^{-13} -17 q^{-14} +69 q^{-15} +7 q^{-16} -8 q^{-17} -25 q^{-18} +10 q^{-19} -10 q^{-20} -18 q^{-21} +24 q^{-22} +3 q^{-23} +3 q^{-24} -7 q^{-25} +5 q^{-26} -3 q^{-27} -9 q^{-28} +6 q^{-29} +2 q^{-31} - q^{-32} + q^{-33} -2 q^{-35} + q^{-36} </math> | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 15]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], |
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], |
||
X[11, 1, 12, 18], X[17, 13, 18, 12]]</nowiki></ |
X[11, 1, 12, 18], X[17, 13, 18, 12]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 15]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 15]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 15]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 15]]&) /@ { |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 10, 2, 18, 16, 6, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, 1, 1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 15]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_15_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 15]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 5}, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, {4, 5}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 15]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 10 2 |
|||
-15 - -- + -- + 10 t - 2 t |
-15 - -- + -- + 10 t - 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 15]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 2 z - 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 15]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 15], Knot[10, 165], Knot[11, NonAlternating, 63], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 2 z - 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 15], Knot[10, 165], Knot[11, NonAlternating, 63], |
|||
Knot[11, NonAlternating, 101]}</nowiki></ |
Knot[11, NonAlternating, 101]}</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 15]], KnotSignature[Knot[9, 15]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 15]], KnotSignature[Knot[9, 15]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{39, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 15]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 1 2 3 4 5 6 7 8 |
|||
-2 + - + 4 q - 6 q + 7 q - 6 q + 6 q - 4 q + 2 q - q |
-2 + - + 4 q - 6 q + 7 q - 6 q + 6 q - 4 q + 2 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 15]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
q + 2 q - 2 q + 2 q + 2 q - q + q - q - q</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 15]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 15]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 4 12 16 20 22 24 26 |
|||
q + 2 q - 2 q + 2 q + 2 q - q + q - q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 15]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 |
|||
-8 -6 -4 -2 2 2 z z z z |
-8 -6 -4 -2 2 2 z z z z |
||
1 - a + a + a - a + z + ---- - -- - -- - -- |
1 - a + a + a - a + z + ---- - -- - -- - -- |
||
6 2 4 2 |
6 2 4 2 |
||
a a a a</nowiki></ |
a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 15]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 15]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-8 -6 -4 -2 2 z z z z z 2 3 z |
-8 -6 -4 -2 2 z z z z z 2 3 z |
||
1 - a - a + a + a + --- + -- - -- + -- + - - 2 z + ---- + |
1 - a - a + a + a + --- + -- - -- + -- + - - 2 z + ---- + |
||
Line 128: | Line 214: | ||
---- + -- + -- |
---- + -- + -- |
||
3 6 4 |
3 6 4 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 15]], Vassiliev[3][Knot[9, 15]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 5}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 15]], Vassiliev[3][Knot[9, 15]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 5}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 15]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 q 3 5 5 2 7 2 |
|||
3 q + 2 q + ----- + --- + - + 4 q t + 2 q t + 3 q t + 4 q t + |
3 q + 2 q + ----- + --- + - + 4 q t + 2 q t + 3 q t + 4 q t + |
||
3 2 q t t |
3 2 q t t |
||
Line 141: | Line 237: | ||
15 6 17 7 |
15 6 17 7 |
||
q t + q t</nowiki></ |
q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 15], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 5 2 3 4 5 6 7 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 15], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 5 2 3 4 5 6 7 |
|||
-8 + q - -- + - + q + 16 q - 21 q - q + 33 q - 33 q - 7 q + |
-8 + q - -- + - + q + 16 q - 21 q - q + 33 q - 33 q - 7 q + |
||
3 q |
3 q |
||
Line 152: | Line 253: | ||
16 17 18 19 20 22 23 |
16 17 18 19 20 22 23 |
||
14 q + 19 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></ |
14 q + 19 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X7,10,8,11 X3948 X9,3,10,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X11,1,12,18 X17,13,18,12 |
Gauss code | -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8 |
Dowker-Thistlethwaite code | 4 8 14 10 2 18 16 6 12 |
Conway Notation | [2322] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{11, 4}, {5, 2}, {4, 10}, {1, 5}, {6, 11}, {3, 7}, {2, 6}, {8, 3}, {7, 9}, {10, 8}, {9, 1}] |
[edit Notes on presentations of 9 15]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 15"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,10,8,11 X3948 X9,3,10,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X11,1,12,18 X17,13,18,12 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 10 2 18 16 6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2322] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 4}, {5, 2}, {4, 10}, {1, 5}, {6, 11}, {3, 7}, {2, 6}, {8, 3}, {7, 9}, {10, 8}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 15"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_165, K11n63, K11n101,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 15"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_165, K11n63, K11n101,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, 5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|