10 56: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 44: | Line 44: | ||
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-q^{50}-7 q^{49}+6 q^{48}+14 q^{47}-15 q^{46}-28 q^{45}+29 q^{44}+53 q^{43}-42 q^{42}-99 q^{41}+55 q^{40}+159 q^{39}-59 q^{38}-227 q^{37}+44 q^{36}+305 q^{35}-23 q^{34}-365 q^{33}-20 q^{32}+419 q^{31}+57 q^{30}-438 q^{29}-108 q^{28}+445 q^{27}+148 q^{26}-422 q^{25}-190 q^{24}+385 q^{23}+222 q^{22}-331 q^{21}-242 q^{20}+258 q^{19}+260 q^{18}-195 q^{17}-244 q^{16}+113 q^{15}+230 q^{14}-59 q^{13}-183 q^{12}+3 q^{11}+146 q^{10}+16 q^9-91 q^8-35 q^7+62 q^6+25 q^5-28 q^4-23 q^3+17 q^2+11 q-5-8 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-q^{50}-7 q^{49}+6 q^{48}+14 q^{47}-15 q^{46}-28 q^{45}+29 q^{44}+53 q^{43}-42 q^{42}-99 q^{41}+55 q^{40}+159 q^{39}-59 q^{38}-227 q^{37}+44 q^{36}+305 q^{35}-23 q^{34}-365 q^{33}-20 q^{32}+419 q^{31}+57 q^{30}-438 q^{29}-108 q^{28}+445 q^{27}+148 q^{26}-422 q^{25}-190 q^{24}+385 q^{23}+222 q^{22}-331 q^{21}-242 q^{20}+258 q^{19}+260 q^{18}-195 q^{17}-244 q^{16}+113 q^{15}+230 q^{14}-59 q^{13}-183 q^{12}+3 q^{11}+146 q^{10}+16 q^9-91 q^8-35 q^7+62 q^6+25 q^5-28 q^4-23 q^3+17 q^2+11 q-5-8 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
||
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+2 q^{85}-5 q^{84}+8 q^{83}-10 q^{82}+8 q^{81}+4 q^{80}-26 q^{79}+28 q^{78}-19 q^{77}+36 q^{76}+12 q^{75}-104 q^{74}+33 q^{73}-17 q^{72}+160 q^{71}+78 q^{70}-287 q^{69}-90 q^{68}-83 q^{67}+462 q^{66}+377 q^{65}-494 q^{64}-461 q^{63}-416 q^{62}+852 q^{61}+1018 q^{60}-485 q^{59}-954 q^{58}-1114 q^{57}+1046 q^{56}+1813 q^{55}-132 q^{54}-1264 q^{53}-1944 q^{52}+897 q^{51}+2385 q^{50}+393 q^{49}-1216 q^{48}-2554 q^{47}+520 q^{46}+2537 q^{45}+841 q^{44}-888 q^{43}-2784 q^{42}+83 q^{41}+2309 q^{40}+1132 q^{39}-404 q^{38}-2678 q^{37}-358 q^{36}+1807 q^{35}+1276 q^{34}+163 q^{33}-2275 q^{32}-756 q^{31}+1089 q^{30}+1224 q^{29}+713 q^{28}-1600 q^{27}-956 q^{26}+312 q^{25}+892 q^{24}+1019 q^{23}-796 q^{22}-805 q^{21}-244 q^{20}+375 q^{19}+921 q^{18}-170 q^{17}-410 q^{16}-386 q^{15}-31 q^{14}+550 q^{13}+81 q^{12}-74 q^{11}-241 q^{10}-153 q^9+216 q^8+69 q^7+45 q^6-80 q^5-100 q^4+60 q^3+15 q^2+35 q-14-37 q^{-1} +17 q^{-2} -2 q^{-3} +11 q^{-4} - q^{-5} -10 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+2 q^{85}-5 q^{84}+8 q^{83}-10 q^{82}+8 q^{81}+4 q^{80}-26 q^{79}+28 q^{78}-19 q^{77}+36 q^{76}+12 q^{75}-104 q^{74}+33 q^{73}-17 q^{72}+160 q^{71}+78 q^{70}-287 q^{69}-90 q^{68}-83 q^{67}+462 q^{66}+377 q^{65}-494 q^{64}-461 q^{63}-416 q^{62}+852 q^{61}+1018 q^{60}-485 q^{59}-954 q^{58}-1114 q^{57}+1046 q^{56}+1813 q^{55}-132 q^{54}-1264 q^{53}-1944 q^{52}+897 q^{51}+2385 q^{50}+393 q^{49}-1216 q^{48}-2554 q^{47}+520 q^{46}+2537 q^{45}+841 q^{44}-888 q^{43}-2784 q^{42}+83 q^{41}+2309 q^{40}+1132 q^{39}-404 q^{38}-2678 q^{37}-358 q^{36}+1807 q^{35}+1276 q^{34}+163 q^{33}-2275 q^{32}-756 q^{31}+1089 q^{30}+1224 q^{29}+713 q^{28}-1600 q^{27}-956 q^{26}+312 q^{25}+892 q^{24}+1019 q^{23}-796 q^{22}-805 q^{21}-244 q^{20}+375 q^{19}+921 q^{18}-170 q^{17}-410 q^{16}-386 q^{15}-31 q^{14}+550 q^{13}+81 q^{12}-74 q^{11}-241 q^{10}-153 q^9+216 q^8+69 q^7+45 q^6-80 q^5-100 q^4+60 q^3+15 q^2+35 q-14-37 q^{-1} +17 q^{-2} -2 q^{-3} +11 q^{-4} - q^{-5} -10 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
||
coloured_jones_5 = |
coloured_jones_5 = | |
||
coloured_jones_6 = |
coloured_jones_6 = | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 56]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 56]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13], |
|||
X[16, 7, 17, 8], X[6, 17, 7, 18], X[20, 16, 1, 15], |
X[16, 7, 17, 8], X[6, 17, 7, 18], X[20, 16, 1, 15], |
||
X[14, 20, 15, 19], X[8, 12, 9, 11], X[2, 10, 3, 9]]</nowiki></ |
X[14, 20, 15, 19], X[8, 12, 9, 11], X[2, 10, 3, 9]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 56]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 56]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, |
|||
-4, 8, -7]</nowiki></ |
-4, 8, -7]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 56]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 16, 2, 8, 18, 20, 6, 14]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 56]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 16, 2, 8, 18, 20, 6, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 56]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_56_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 56]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, 2, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 56]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 56]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_56_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 56]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 56]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 14 2 3 |
|||
17 - -- + -- - -- - 14 t + 8 t - 2 t |
17 - -- + -- - -- - 14 t + 8 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 56]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 - 4 z - 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 56]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 |
|||
1 - 4 z - 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 56]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 |
|||
<table><tr align=left> |
|||
1 - 2 q + 5 q - 7 q + 10 q - 11 q + 10 q - 9 q + 6 q - 3 q + q</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 56]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 56]], KnotSignature[Knot[10, 56]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{65, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 56]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8 9 10 |
|||
1 - 2 q + 5 q - 7 q + 10 q - 11 q + 10 q - 9 q + 6 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 25], Knot[10, 56]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 56]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 10 12 18 20 22 24 26 |
|||
1 + q + 2 q - q + 3 q - q - 3 q + q - 2 q + q + q - |
1 + q + 2 q - q + 3 q - q - 3 q + q - 2 q + q + q - |
||
28 30 |
28 30 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 56]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 4 4 4 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 56]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 4 4 4 4 |
|||
-8 2 2 2 z 3 z 2 z 3 z z 3 z 3 z z |
-8 2 2 2 z 3 z 2 z 3 z z 3 z 3 z z |
||
a - -- + -- + ---- - ---- - ---- + ---- + -- - ---- - ---- + -- - |
a - -- + -- + ---- - ---- - ---- + ---- + -- - ---- - ---- + -- - |
||
Line 112: | Line 193: | ||
-- - -- |
-- - -- |
||
6 4 |
6 4 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 56]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 56]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 2 |
|||
-8 2 2 4 z 8 z 4 z z 2 z 2 z 7 z 3 z |
-8 2 2 4 z 8 z 4 z z 2 z 2 z 7 z 3 z |
||
a + -- - -- - --- - --- - --- - --- + ---- - ---- - ---- + ---- + |
a + -- - -- - --- - --- - --- - --- + ---- - ---- - ---- + ---- + |
||
Line 142: | Line 228: | ||
---- + -- + -- |
---- + -- + -- |
||
4 7 5 |
4 7 5 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 56]], Vassiliev[3][Knot[10, 56]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 56]], Vassiliev[3][Knot[10, 56]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 56]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
3 5 1 q q 5 7 7 2 9 2 |
3 5 1 q q 5 7 7 2 9 2 |
||
4 q + 2 q + ---- + - + -- + 4 q t + 3 q t + 6 q t + 4 q t + |
4 q + 2 q + ---- + - + -- + 4 q t + 3 q t + 6 q t + 4 q t + |
||
Line 156: | Line 252: | ||
15 6 17 6 17 7 19 7 21 8 |
15 6 17 6 17 7 19 7 21 8 |
||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
2 q t + 4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 56], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 7 8 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 56], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 7 8 |
|||
q - - + 7 q - 9 q - 4 q + 25 q - 21 q - 20 q + 55 q - 26 q - |
q - - + 7 q - 9 q - 4 q + 25 q - 21 q - 20 q + 55 q - 26 q - |
||
q |
q |
||
Line 169: | Line 270: | ||
25 26 27 28 |
25 26 27 28 |
||
6 q + 2 q - 3 q + q</nowiki></ |
6 q + 2 q - 3 q + q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 18:06, 1 September 2005
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 56's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X12,6,13,5 X18,14,19,13 X16,7,17,8 X6,17,7,18 X20,16,1,15 X14,20,15,19 X8,12,9,11 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7 |
Dowker-Thistlethwaite code | 4 10 12 16 2 8 18 20 6 14 |
Conway Notation | [221,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{3, 12}, {2, 5}, {1, 3}, {9, 4}, {10, 8}, {7, 9}, {8, 2}, {6, 11}, {5, 7}, {4, 6}, {12, 10}, {11, 1}] |
[edit Notes on presentations of 10 56]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 56"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X12,6,13,5 X18,14,19,13 X16,7,17,8 X6,17,7,18 X20,16,1,15 X14,20,15,19 X8,12,9,11 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 2 8 18 20 6 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[221,3,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,2,-1,2,-3,2,2,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 5}, {1, 3}, {9, 4}, {10, 8}, {7, 9}, {8, 2}, {6, 11}, {5, 7}, {4, 6}, {12, 10}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-4 z^4+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 65, 4 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-3 q^9+6 q^8-9 q^7+10 q^6-11 q^5+10 q^4-7 q^3+5 q^2-2 q+1} |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -3 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +3 z^2 a^{-2} -2 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-8} +2 a^{-2} -2 a^{-6} + a^{-8} } |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-5} +z^9 a^{-7} +2 z^8 a^{-4} +6 z^8 a^{-6} +4 z^8 a^{-8} +2 z^7 a^{-3} +3 z^7 a^{-5} +7 z^7 a^{-7} +6 z^7 a^{-9} +z^6 a^{-2} -3 z^6 a^{-4} -14 z^6 a^{-6} -5 z^6 a^{-8} +5 z^6 a^{-10} -6 z^5 a^{-3} -13 z^5 a^{-5} -21 z^5 a^{-7} -11 z^5 a^{-9} +3 z^5 a^{-11} -4 z^4 a^{-2} -3 z^4 a^{-4} +12 z^4 a^{-6} +4 z^4 a^{-8} -6 z^4 a^{-10} +z^4 a^{-12} +4 z^3 a^{-3} +11 z^3 a^{-5} +21 z^3 a^{-7} +11 z^3 a^{-9} -3 z^3 a^{-11} +5 z^2 a^{-2} +3 z^2 a^{-4} -7 z^2 a^{-6} -2 z^2 a^{-8} +2 z^2 a^{-10} -z^2 a^{-12} -4 z a^{-5} -8 z a^{-7} -4 z a^{-9} -2 a^{-2} +2 a^{-6} + a^{-8} } |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+ q^{-4} +2 q^{-6} - q^{-8} +3 q^{-10} - q^{-12} -3 q^{-18} + q^{-20} -2 q^{-22} + q^{-24} + q^{-26} - q^{-28} + q^{-30} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +4 q^{-6} -5 q^{-8} +6 q^{-10} -4 q^{-12} - q^{-14} +12 q^{-16} -20 q^{-18} +30 q^{-20} -30 q^{-22} +20 q^{-24} +2 q^{-26} -32 q^{-28} +65 q^{-30} -79 q^{-32} +73 q^{-34} -37 q^{-36} -17 q^{-38} +73 q^{-40} -108 q^{-42} +110 q^{-44} -70 q^{-46} +6 q^{-48} +57 q^{-50} -93 q^{-52} +86 q^{-54} -39 q^{-56} -18 q^{-58} +67 q^{-60} -80 q^{-62} +48 q^{-64} +9 q^{-66} -79 q^{-68} +121 q^{-70} -120 q^{-72} +71 q^{-74} +7 q^{-76} -92 q^{-78} +146 q^{-80} -158 q^{-82} +116 q^{-84} -44 q^{-86} -46 q^{-88} +109 q^{-90} -130 q^{-92} +103 q^{-94} -38 q^{-96} -28 q^{-98} +71 q^{-100} -73 q^{-102} +35 q^{-104} +21 q^{-106} -68 q^{-108} +89 q^{-110} -64 q^{-112} +13 q^{-114} +50 q^{-116} -94 q^{-118} +107 q^{-120} -83 q^{-122} +37 q^{-124} +12 q^{-126} -54 q^{-128} +72 q^{-130} -68 q^{-132} +50 q^{-134} -20 q^{-136} -4 q^{-138} +19 q^{-140} -29 q^{-142} +26 q^{-144} -19 q^{-146} +11 q^{-148} -2 q^{-150} -3 q^{-152} +5 q^{-154} -6 q^{-156} +4 q^{-158} -2 q^{-160} + q^{-162} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q- q^{-1} +3 q^{-3} -2 q^{-5} +3 q^{-7} - q^{-9} - q^{-11} + q^{-13} -3 q^{-15} +3 q^{-17} -2 q^{-19} + q^{-21} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-q^4-q^2+5-2 q^{-2} -6 q^{-4} +12 q^{-6} -16 q^{-10} +14 q^{-12} +9 q^{-14} -21 q^{-16} +7 q^{-18} +14 q^{-20} -15 q^{-22} -4 q^{-24} +11 q^{-26} -11 q^{-30} +2 q^{-32} +16 q^{-34} -13 q^{-36} -9 q^{-38} +22 q^{-40} -9 q^{-42} -13 q^{-44} +16 q^{-46} - q^{-48} -8 q^{-50} +5 q^{-52} -2 q^{-56} + q^{-58} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-q^{13}-q^{11}+q^9+4 q^7-2 q^5-7 q^3+2 q+15 q^{-1} -23 q^{-5} -9 q^{-7} +36 q^{-9} +24 q^{-11} -39 q^{-13} -48 q^{-15} +36 q^{-17} +74 q^{-19} -18 q^{-21} -93 q^{-23} -9 q^{-25} +101 q^{-27} +40 q^{-29} -96 q^{-31} -66 q^{-33} +79 q^{-35} +81 q^{-37} -55 q^{-39} -93 q^{-41} +34 q^{-43} +86 q^{-45} -5 q^{-47} -79 q^{-49} -19 q^{-51} +63 q^{-53} +47 q^{-55} -44 q^{-57} -70 q^{-59} +18 q^{-61} +91 q^{-63} +11 q^{-65} -103 q^{-67} -39 q^{-69} +99 q^{-71} +63 q^{-73} -83 q^{-75} -72 q^{-77} +56 q^{-79} +73 q^{-81} -33 q^{-83} -59 q^{-85} +12 q^{-87} +39 q^{-89} -23 q^{-93} -2 q^{-95} +12 q^{-97} -4 q^{-101} +2 q^{-105} -2 q^{-109} + q^{-111} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}-q^{24}+q^{22}+4 q^{18}-4 q^{16}-5 q^{14}+4 q^{12}+3 q^{10}+15 q^8-12 q^6-25 q^4-q^2+16+59 q^{-2} -4 q^{-4} -70 q^{-6} -60 q^{-8} -6 q^{-10} +150 q^{-12} +97 q^{-14} -64 q^{-16} -183 q^{-18} -171 q^{-20} +163 q^{-22} +285 q^{-24} +140 q^{-26} -196 q^{-28} -447 q^{-30} -76 q^{-32} +330 q^{-34} +472 q^{-36} +77 q^{-38} -549 q^{-40} -451 q^{-42} +66 q^{-44} +622 q^{-46} +471 q^{-48} -333 q^{-50} -639 q^{-52} -307 q^{-54} +470 q^{-56} +670 q^{-58} -5 q^{-60} -555 q^{-62} -503 q^{-64} +215 q^{-66} +613 q^{-68} +210 q^{-70} -357 q^{-72} -501 q^{-74} + q^{-76} +442 q^{-78} +336 q^{-80} -148 q^{-82} -439 q^{-84} -211 q^{-86} +226 q^{-88} +456 q^{-90} +128 q^{-92} -320 q^{-94} -472 q^{-96} -95 q^{-98} +515 q^{-100} +467 q^{-102} -58 q^{-104} -630 q^{-106} -481 q^{-108} +349 q^{-110} +659 q^{-112} +306 q^{-114} -489 q^{-116} -683 q^{-118} +15 q^{-120} +508 q^{-122} +499 q^{-124} -142 q^{-126} -532 q^{-128} -199 q^{-130} +172 q^{-132} +379 q^{-134} +80 q^{-136} -222 q^{-138} -156 q^{-140} -33 q^{-142} +150 q^{-144} +84 q^{-146} -40 q^{-148} -42 q^{-150} -47 q^{-152} +31 q^{-154} +23 q^{-156} -5 q^{-158} +4 q^{-160} -16 q^{-162} +5 q^{-164} +3 q^{-166} -3 q^{-168} +4 q^{-170} -3 q^{-172} +2 q^{-174} -2 q^{-178} + q^{-180} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{45}-q^{43}-q^{41}+q^{39}+2 q^{33}-2 q^{31}-4 q^{29}+4 q^{27}+6 q^{25}+q^{23}-q^{21}-13 q^{19}-18 q^{17}+4 q^{15}+34 q^{13}+37 q^{11}+10 q^9-47 q^7-91 q^5-55 q^3+55 q+158 q^{-1} +156 q^{-3} -4 q^{-5} -225 q^{-7} -314 q^{-9} -149 q^{-11} +214 q^{-13} +519 q^{-15} +435 q^{-17} -62 q^{-19} -637 q^{-21} -827 q^{-23} -347 q^{-25} +578 q^{-27} +1225 q^{-29} +958 q^{-31} -169 q^{-33} -1401 q^{-35} -1708 q^{-37} -617 q^{-39} +1206 q^{-41} +2328 q^{-43} +1674 q^{-45} -490 q^{-47} -2576 q^{-49} -2787 q^{-51} -672 q^{-53} +2279 q^{-55} +3643 q^{-57} +2059 q^{-59} -1415 q^{-61} -3997 q^{-63} -3386 q^{-65} +148 q^{-67} +3776 q^{-69} +4349 q^{-71} +1221 q^{-73} -3045 q^{-75} -4789 q^{-77} -2428 q^{-79} +2023 q^{-81} +4709 q^{-83} +3267 q^{-85} -997 q^{-87} -4217 q^{-89} -3627 q^{-91} +95 q^{-93} +3529 q^{-95} +3648 q^{-97} +510 q^{-99} -2830 q^{-101} -3367 q^{-103} -897 q^{-105} +2183 q^{-107} +3071 q^{-109} +1118 q^{-111} -1684 q^{-113} -2771 q^{-115} -1338 q^{-117} +1199 q^{-119} +2594 q^{-121} +1672 q^{-123} -685 q^{-125} -2452 q^{-127} -2175 q^{-129} -16 q^{-131} +2274 q^{-133} +2790 q^{-135} +959 q^{-137} -1893 q^{-139} -3410 q^{-141} -2108 q^{-143} +1204 q^{-145} +3818 q^{-147} +3325 q^{-149} -161 q^{-151} -3825 q^{-153} -4394 q^{-155} -1116 q^{-157} +3324 q^{-159} +5039 q^{-161} +2407 q^{-163} -2327 q^{-165} -5079 q^{-167} -3463 q^{-169} +1071 q^{-171} +4497 q^{-173} +3972 q^{-175} +208 q^{-177} -3418 q^{-179} -3921 q^{-181} -1180 q^{-183} +2171 q^{-185} +3312 q^{-187} +1679 q^{-189} -998 q^{-191} -2423 q^{-193} -1712 q^{-195} +161 q^{-197} +1511 q^{-199} +1397 q^{-201} +280 q^{-203} -752 q^{-205} -956 q^{-207} -412 q^{-209} +269 q^{-211} +557 q^{-213} +340 q^{-215} -36 q^{-217} -252 q^{-219} -220 q^{-221} -52 q^{-223} +94 q^{-225} +121 q^{-227} +44 q^{-229} -23 q^{-231} -45 q^{-233} -31 q^{-235} -3 q^{-237} +19 q^{-239} +19 q^{-241} -2 q^{-243} -7 q^{-245} -2 q^{-247} -4 q^{-249} +5 q^{-253} + q^{-255} -3 q^{-257} +2 q^{-259} -2 q^{-263} + q^{-265} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^2+8-16 q^{-2} +35 q^{-4} -58 q^{-6} +102 q^{-8} -152 q^{-10} +223 q^{-12} -294 q^{-14} +366 q^{-16} -418 q^{-18} +434 q^{-20} -408 q^{-22} +318 q^{-24} -180 q^{-26} -5 q^{-28} +210 q^{-30} -420 q^{-32} +610 q^{-34} -751 q^{-36} +832 q^{-38} -844 q^{-40} +784 q^{-42} -661 q^{-44} +488 q^{-46} -284 q^{-48} +80 q^{-50} +107 q^{-52} -252 q^{-54} +348 q^{-56} -396 q^{-58} +395 q^{-60} -360 q^{-62} +306 q^{-64} -246 q^{-66} +187 q^{-68} -134 q^{-70} +92 q^{-72} -60 q^{-74} +36 q^{-76} -20 q^{-78} +10 q^{-80} -4 q^{-82} + q^{-84} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-1+ q^{-2} +4 q^{-4} + q^{-6} -3 q^{-8} +2 q^{-10} +9 q^{-12} - q^{-14} -8 q^{-16} +3 q^{-18} +6 q^{-20} -7 q^{-22} -6 q^{-24} +5 q^{-26} +3 q^{-28} -6 q^{-30} + q^{-32} +6 q^{-34} -6 q^{-36} -3 q^{-38} +7 q^{-40} -2 q^{-42} -7 q^{-44} +5 q^{-46} +8 q^{-48} -5 q^{-50} -6 q^{-52} +6 q^{-54} +4 q^{-56} -6 q^{-58} -2 q^{-60} +5 q^{-62} -2 q^{-66} - q^{-68} + q^{-70} - q^{-74} + q^{-76} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-2} +2 q^{-4} +3 q^{-6} -3 q^{-8} +5 q^{-10} +6 q^{-12} -9 q^{-14} +9 q^{-16} +7 q^{-18} -15 q^{-20} +9 q^{-22} +7 q^{-24} -18 q^{-26} + q^{-28} +4 q^{-30} -10 q^{-32} -4 q^{-34} +4 q^{-36} +7 q^{-38} -4 q^{-40} - q^{-42} +16 q^{-44} -7 q^{-46} -10 q^{-48} +17 q^{-50} -7 q^{-52} -11 q^{-54} +12 q^{-56} -2 q^{-58} -6 q^{-60} +5 q^{-62} -2 q^{-66} + q^{-68} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} +2 q^{-5} +3 q^{-9} - q^{-11} +3 q^{-13} - q^{-15} + q^{-17} - q^{-19} - q^{-21} - q^{-23} -3 q^{-25} + q^{-27} -2 q^{-29} +2 q^{-31} - q^{-33} +2 q^{-35} - q^{-37} + q^{-39} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-6} +3 q^{-8} +2 q^{-10} + q^{-12} +4 q^{-14} +4 q^{-16} +8 q^{-22} +3 q^{-24} -6 q^{-26} +4 q^{-28} +11 q^{-30} -10 q^{-32} -13 q^{-34} +4 q^{-36} -4 q^{-38} -21 q^{-40} -9 q^{-42} +8 q^{-44} -4 q^{-46} -5 q^{-48} +17 q^{-50} +14 q^{-52} -5 q^{-54} +8 q^{-56} +13 q^{-58} -9 q^{-60} -10 q^{-62} +7 q^{-64} + q^{-66} -12 q^{-68} -2 q^{-70} +9 q^{-72} - q^{-74} -7 q^{-76} +3 q^{-78} +4 q^{-80} -2 q^{-82} - q^{-84} + q^{-86} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} +2 q^{-6} + q^{-8} + q^{-10} +3 q^{-12} - q^{-14} +3 q^{-16} - q^{-18} + q^{-20} - q^{-24} - q^{-26} -2 q^{-28} - q^{-30} -3 q^{-32} + q^{-34} -2 q^{-36} +2 q^{-38} +2 q^{-44} - q^{-46} + q^{-48} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2- q^{-2} - q^{-4} +3 q^{-6} +4 q^{-8} - q^{-10} -6 q^{-12} - q^{-14} +9 q^{-16} +10 q^{-18} -6 q^{-20} -14 q^{-22} +19 q^{-26} +11 q^{-28} -14 q^{-30} -18 q^{-32} +5 q^{-34} +20 q^{-36} +4 q^{-38} -18 q^{-40} -11 q^{-42} +9 q^{-44} +10 q^{-46} -8 q^{-48} -13 q^{-50} +3 q^{-52} +11 q^{-54} -2 q^{-56} -13 q^{-58} +14 q^{-62} +7 q^{-64} -12 q^{-66} -9 q^{-68} +12 q^{-70} +16 q^{-72} -6 q^{-74} -19 q^{-76} -2 q^{-78} +19 q^{-80} +11 q^{-82} -13 q^{-84} -17 q^{-86} +2 q^{-88} +15 q^{-90} +5 q^{-92} -8 q^{-94} -8 q^{-96} + q^{-98} +6 q^{-100} +2 q^{-102} -2 q^{-104} -2 q^{-106} + q^{-110} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +3 q^{-6} -2 q^{-8} +7 q^{-10} -5 q^{-12} +10 q^{-14} -8 q^{-16} +15 q^{-18} -13 q^{-20} +15 q^{-22} -13 q^{-24} +15 q^{-26} -10 q^{-28} +7 q^{-30} -3 q^{-32} - q^{-34} +4 q^{-36} -17 q^{-38} +13 q^{-40} -24 q^{-42} +21 q^{-44} -32 q^{-46} +26 q^{-48} -26 q^{-50} +29 q^{-52} -20 q^{-54} +20 q^{-56} -11 q^{-58} +13 q^{-60} -3 q^{-64} +4 q^{-66} -10 q^{-68} +14 q^{-70} -15 q^{-72} +12 q^{-74} -16 q^{-76} +15 q^{-78} -10 q^{-80} +8 q^{-82} -8 q^{-84} +6 q^{-86} -3 q^{-88} +2 q^{-90} -2 q^{-92} + q^{-94} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +4 q^{-6} -5 q^{-8} +6 q^{-10} -4 q^{-12} - q^{-14} +12 q^{-16} -20 q^{-18} +30 q^{-20} -30 q^{-22} +20 q^{-24} +2 q^{-26} -32 q^{-28} +65 q^{-30} -79 q^{-32} +73 q^{-34} -37 q^{-36} -17 q^{-38} +73 q^{-40} -108 q^{-42} +110 q^{-44} -70 q^{-46} +6 q^{-48} +57 q^{-50} -93 q^{-52} +86 q^{-54} -39 q^{-56} -18 q^{-58} +67 q^{-60} -80 q^{-62} +48 q^{-64} +9 q^{-66} -79 q^{-68} +121 q^{-70} -120 q^{-72} +71 q^{-74} +7 q^{-76} -92 q^{-78} +146 q^{-80} -158 q^{-82} +116 q^{-84} -44 q^{-86} -46 q^{-88} +109 q^{-90} -130 q^{-92} +103 q^{-94} -38 q^{-96} -28 q^{-98} +71 q^{-100} -73 q^{-102} +35 q^{-104} +21 q^{-106} -68 q^{-108} +89 q^{-110} -64 q^{-112} +13 q^{-114} +50 q^{-116} -94 q^{-118} +107 q^{-120} -83 q^{-122} +37 q^{-124} +12 q^{-126} -54 q^{-128} +72 q^{-130} -68 q^{-132} +50 q^{-134} -20 q^{-136} -4 q^{-138} +19 q^{-140} -29 q^{-142} +26 q^{-144} -19 q^{-146} +11 q^{-148} -2 q^{-150} -3 q^{-152} +5 q^{-154} -6 q^{-156} +4 q^{-158} -2 q^{-160} + q^{-162} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 56"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-4 z^4+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 65, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-3 q^9+6 q^8-9 q^7+10 q^6-11 q^5+10 q^4-7 q^3+5 q^2-2 q+1} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -3 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +3 z^2 a^{-2} -2 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-8} +2 a^{-2} -2 a^{-6} + a^{-8} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-5} +z^9 a^{-7} +2 z^8 a^{-4} +6 z^8 a^{-6} +4 z^8 a^{-8} +2 z^7 a^{-3} +3 z^7 a^{-5} +7 z^7 a^{-7} +6 z^7 a^{-9} +z^6 a^{-2} -3 z^6 a^{-4} -14 z^6 a^{-6} -5 z^6 a^{-8} +5 z^6 a^{-10} -6 z^5 a^{-3} -13 z^5 a^{-5} -21 z^5 a^{-7} -11 z^5 a^{-9} +3 z^5 a^{-11} -4 z^4 a^{-2} -3 z^4 a^{-4} +12 z^4 a^{-6} +4 z^4 a^{-8} -6 z^4 a^{-10} +z^4 a^{-12} +4 z^3 a^{-3} +11 z^3 a^{-5} +21 z^3 a^{-7} +11 z^3 a^{-9} -3 z^3 a^{-11} +5 z^2 a^{-2} +3 z^2 a^{-4} -7 z^2 a^{-6} -2 z^2 a^{-8} +2 z^2 a^{-10} -z^2 a^{-12} -4 z a^{-5} -8 z a^{-7} -4 z a^{-9} -2 a^{-2} +2 a^{-6} + a^{-8} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_25, K11a140,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {10_25,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 56"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-14 t+17-14 t^{-1} +8 t^{-2} -2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-3 q^9+6 q^8-9 q^7+10 q^6-11 q^5+10 q^4-7 q^3+5 q^2-2 q+1} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_25, K11a140,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_25,} |
Vassiliev invariants
V2 and V3: | (0, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 56. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-3 q^{27}+2 q^{26}+6 q^{25}-16 q^{24}+9 q^{23}+23 q^{22}-45 q^{21}+13 q^{20}+54 q^{19}-76 q^{18}+9 q^{17}+83 q^{16}-90 q^{15}-4 q^{14}+94 q^{13}-79 q^{12}-19 q^{11}+83 q^{10}-50 q^9-26 q^8+55 q^7-20 q^6-21 q^5+25 q^4-4 q^3-9 q^2+7 q-2 q^{-1} + q^{-2} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-q^{50}-7 q^{49}+6 q^{48}+14 q^{47}-15 q^{46}-28 q^{45}+29 q^{44}+53 q^{43}-42 q^{42}-99 q^{41}+55 q^{40}+159 q^{39}-59 q^{38}-227 q^{37}+44 q^{36}+305 q^{35}-23 q^{34}-365 q^{33}-20 q^{32}+419 q^{31}+57 q^{30}-438 q^{29}-108 q^{28}+445 q^{27}+148 q^{26}-422 q^{25}-190 q^{24}+385 q^{23}+222 q^{22}-331 q^{21}-242 q^{20}+258 q^{19}+260 q^{18}-195 q^{17}-244 q^{16}+113 q^{15}+230 q^{14}-59 q^{13}-183 q^{12}+3 q^{11}+146 q^{10}+16 q^9-91 q^8-35 q^7+62 q^6+25 q^5-28 q^4-23 q^3+17 q^2+11 q-5-8 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-3 q^{87}+2 q^{86}+2 q^{85}-5 q^{84}+8 q^{83}-10 q^{82}+8 q^{81}+4 q^{80}-26 q^{79}+28 q^{78}-19 q^{77}+36 q^{76}+12 q^{75}-104 q^{74}+33 q^{73}-17 q^{72}+160 q^{71}+78 q^{70}-287 q^{69}-90 q^{68}-83 q^{67}+462 q^{66}+377 q^{65}-494 q^{64}-461 q^{63}-416 q^{62}+852 q^{61}+1018 q^{60}-485 q^{59}-954 q^{58}-1114 q^{57}+1046 q^{56}+1813 q^{55}-132 q^{54}-1264 q^{53}-1944 q^{52}+897 q^{51}+2385 q^{50}+393 q^{49}-1216 q^{48}-2554 q^{47}+520 q^{46}+2537 q^{45}+841 q^{44}-888 q^{43}-2784 q^{42}+83 q^{41}+2309 q^{40}+1132 q^{39}-404 q^{38}-2678 q^{37}-358 q^{36}+1807 q^{35}+1276 q^{34}+163 q^{33}-2275 q^{32}-756 q^{31}+1089 q^{30}+1224 q^{29}+713 q^{28}-1600 q^{27}-956 q^{26}+312 q^{25}+892 q^{24}+1019 q^{23}-796 q^{22}-805 q^{21}-244 q^{20}+375 q^{19}+921 q^{18}-170 q^{17}-410 q^{16}-386 q^{15}-31 q^{14}+550 q^{13}+81 q^{12}-74 q^{11}-241 q^{10}-153 q^9+216 q^8+69 q^7+45 q^6-80 q^5-100 q^4+60 q^3+15 q^2+35 q-14-37 q^{-1} +17 q^{-2} -2 q^{-3} +11 q^{-4} - q^{-5} -10 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|