8 10: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=8_10}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 8 |
k = 10 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,5,-8,2,-3,7,-6,4,-5,3,-7,6/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table> |
braid_crossings = 8 |
braid_width = 3 |
braid_index = 3 |
same_alexander = [[10_143]], [[K11n106]], |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math>q^{17}-2 q^{16}+q^{15}+4 q^{14}-9 q^{13}+3 q^{12}+12 q^{11}-19 q^{10}+3 q^9+20 q^8-24 q^7+2 q^6+23 q^5-21 q^4-2 q^3+21 q^2-14 q-5+14 q^{-1} -6 q^{-2} -5 q^{-3} +6 q^{-4} - q^{-5} -2 q^{-6} + q^{-7} </math> |
coloured_jones_3 = <math>-q^{33}+2 q^{32}-q^{31}-q^{30}+5 q^{28}-3 q^{27}-8 q^{26}+5 q^{25}+17 q^{24}-10 q^{23}-25 q^{22}+8 q^{21}+40 q^{20}-10 q^{19}-51 q^{18}+8 q^{17}+59 q^{16}-2 q^{15}-69 q^{14}+q^{13}+66 q^{12}+10 q^{11}-71 q^{10}-8 q^9+59 q^8+21 q^7-58 q^6-20 q^5+44 q^4+31 q^3-39 q^2-28 q+25+31 q^{-1} -16 q^{-2} -28 q^{-3} +7 q^{-4} +22 q^{-5} -16 q^{-7} -3 q^{-8} +9 q^{-9} +4 q^{-10} -5 q^{-11} -2 q^{-12} + q^{-13} +2 q^{-14} - q^{-15} </math> |
coloured_jones_4 = <math>q^{54}-2 q^{53}+q^{52}+q^{51}-3 q^{50}+4 q^{49}-5 q^{48}+5 q^{47}+3 q^{46}-13 q^{45}+7 q^{44}-9 q^{43}+22 q^{42}+15 q^{41}-39 q^{40}-8 q^{39}-22 q^{38}+64 q^{37}+55 q^{36}-68 q^{35}-48 q^{34}-67 q^{33}+111 q^{32}+127 q^{31}-75 q^{30}-93 q^{29}-136 q^{28}+136 q^{27}+195 q^{26}-56 q^{25}-111 q^{24}-195 q^{23}+127 q^{22}+228 q^{21}-28 q^{20}-100 q^{19}-222 q^{18}+100 q^{17}+220 q^{16}-2 q^{15}-67 q^{14}-224 q^{13}+64 q^{12}+187 q^{11}+24 q^{10}-23 q^9-206 q^8+17 q^7+136 q^6+50 q^5+28 q^4-171 q^3-30 q^2+74 q+59+69 q^{-1} -112 q^{-2} -53 q^{-3} +11 q^{-4} +39 q^{-5} +82 q^{-6} -47 q^{-7} -40 q^{-8} -23 q^{-9} +6 q^{-10} +59 q^{-11} -6 q^{-12} -12 q^{-13} -21 q^{-14} -11 q^{-15} +25 q^{-16} +3 q^{-17} +2 q^{-18} -7 q^{-19} -8 q^{-20} +6 q^{-21} + q^{-22} +2 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} </math> |
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}-q^{77}+3 q^{76}-q^{75}-4 q^{74}+3 q^{73}-q^{71}+8 q^{70}-14 q^{68}-5 q^{67}-q^{66}+11 q^{65}+29 q^{64}+12 q^{63}-29 q^{62}-53 q^{61}-34 q^{60}+28 q^{59}+103 q^{58}+84 q^{57}-30 q^{56}-150 q^{55}-163 q^{54}-4 q^{53}+217 q^{52}+261 q^{51}+52 q^{50}-250 q^{49}-376 q^{48}-150 q^{47}+287 q^{46}+487 q^{45}+243 q^{44}-273 q^{43}-583 q^{42}-354 q^{41}+244 q^{40}+652 q^{39}+453 q^{38}-208 q^{37}-683 q^{36}-518 q^{35}+140 q^{34}+694 q^{33}+584 q^{32}-112 q^{31}-676 q^{30}-584 q^{29}+39 q^{28}+647 q^{27}+617 q^{26}-31 q^{25}-604 q^{24}-576 q^{23}-39 q^{22}+552 q^{21}+590 q^{20}+45 q^{19}-490 q^{18}-534 q^{17}-123 q^{16}+419 q^{15}+536 q^{14}+137 q^{13}-331 q^{12}-468 q^{11}-215 q^{10}+236 q^9+443 q^8+235 q^7-137 q^6-348 q^5-283 q^4+30 q^3+288 q^2+274 q+55-179 q^{-1} -259 q^{-2} -126 q^{-3} +92 q^{-4} +209 q^{-5} +156 q^{-6} -6 q^{-7} -144 q^{-8} -158 q^{-9} -55 q^{-10} +78 q^{-11} +132 q^{-12} +81 q^{-13} -17 q^{-14} -92 q^{-15} -84 q^{-16} -18 q^{-17} +48 q^{-18} +66 q^{-19} +37 q^{-20} -18 q^{-21} -44 q^{-22} -30 q^{-23} -4 q^{-24} +20 q^{-25} +27 q^{-26} +8 q^{-27} -11 q^{-28} -11 q^{-29} -7 q^{-30} -2 q^{-31} +9 q^{-32} +6 q^{-33} -2 q^{-34} -2 q^{-35} - q^{-36} -2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} </math> |
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}+q^{108}-3 q^{107}+q^{106}+q^{105}+6 q^{104}-8 q^{103}-2 q^{102}+6 q^{101}-9 q^{100}+4 q^{99}+9 q^{98}+17 q^{97}-20 q^{96}-17 q^{95}+4 q^{94}-25 q^{93}+14 q^{92}+44 q^{91}+63 q^{90}-30 q^{89}-60 q^{88}-44 q^{87}-106 q^{86}+13 q^{85}+138 q^{84}+228 q^{83}+54 q^{82}-106 q^{81}-200 q^{80}-385 q^{79}-128 q^{78}+254 q^{77}+596 q^{76}+403 q^{75}+23 q^{74}-401 q^{73}-946 q^{72}-607 q^{71}+171 q^{70}+1060 q^{69}+1066 q^{68}+522 q^{67}-390 q^{66}-1601 q^{65}-1407 q^{64}-293 q^{63}+1306 q^{62}+1782 q^{61}+1311 q^{60}-12 q^{59}-1998 q^{58}-2199 q^{57}-998 q^{56}+1186 q^{55}+2193 q^{54}+2031 q^{53}+560 q^{52}-2005 q^{51}-2646 q^{50}-1607 q^{49}+862 q^{48}+2225 q^{47}+2411 q^{46}+1026 q^{45}-1785 q^{44}-2715 q^{43}-1919 q^{42}+568 q^{41}+2039 q^{40}+2470 q^{39}+1259 q^{38}-1529 q^{37}-2570 q^{36}-1982 q^{35}+369 q^{34}+1780 q^{33}+2364 q^{32}+1346 q^{31}-1263 q^{30}-2334 q^{29}-1942 q^{28}+172 q^{27}+1454 q^{26}+2191 q^{25}+1420 q^{24}-901 q^{23}-2001 q^{22}-1882 q^{21}-122 q^{20}+997 q^{19}+1934 q^{18}+1520 q^{17}-391 q^{16}-1511 q^{15}-1750 q^{14}-488 q^{13}+391 q^{12}+1502 q^{11}+1535 q^{10}+193 q^9-844 q^8-1418 q^7-755 q^6-260 q^5+865 q^4+1296 q^3+624 q^2-127 q-840-720 q^{-1} -704 q^{-2} +171 q^{-3} +767 q^{-4} +680 q^{-5} +361 q^{-6} -193 q^{-7} -361 q^{-8} -731 q^{-9} -278 q^{-10} +173 q^{-11} +381 q^{-12} +424 q^{-13} +205 q^{-14} +64 q^{-15} -419 q^{-16} -323 q^{-17} -161 q^{-18} +28 q^{-19} +190 q^{-20} +229 q^{-21} +249 q^{-22} -91 q^{-23} -132 q^{-24} -165 q^{-25} -109 q^{-26} -24 q^{-27} +78 q^{-28} +183 q^{-29} +32 q^{-30} +13 q^{-31} -52 q^{-32} -65 q^{-33} -68 q^{-34} -16 q^{-35} +68 q^{-36} +20 q^{-37} +32 q^{-38} +4 q^{-39} -9 q^{-40} -33 q^{-41} -21 q^{-42} +15 q^{-43} +12 q^{-45} +6 q^{-46} +5 q^{-47} -9 q^{-48} -8 q^{-49} +4 q^{-50} -2 q^{-51} +2 q^{-52} + q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-57} </math> |
coloured_jones_7 = <math>-q^{147}+2 q^{146}-q^{145}-q^{144}+3 q^{143}-q^{142}-q^{141}-3 q^{140}-q^{139}+10 q^{138}-3 q^{137}-5 q^{136}+5 q^{135}-5 q^{134}-2 q^{133}-8 q^{132}+33 q^{130}+3 q^{129}-13 q^{128}-4 q^{127}-29 q^{126}-13 q^{125}-21 q^{124}+13 q^{123}+96 q^{122}+52 q^{121}+8 q^{120}-34 q^{119}-131 q^{118}-116 q^{117}-95 q^{116}+25 q^{115}+261 q^{114}+276 q^{113}+212 q^{112}+2 q^{111}-378 q^{110}-509 q^{109}-510 q^{108}-162 q^{107}+512 q^{106}+890 q^{105}+980 q^{104}+500 q^{103}-550 q^{102}-1333 q^{101}-1700 q^{100}-1131 q^{99}+415 q^{98}+1774 q^{97}+2613 q^{96}+2089 q^{95}+51 q^{94}-2106 q^{93}-3671 q^{92}-3343 q^{91}-825 q^{90}+2168 q^{89}+4631 q^{88}+4818 q^{87}+2013 q^{86}-1899 q^{85}-5485 q^{84}-6312 q^{83}-3356 q^{82}+1267 q^{81}+5938 q^{80}+7656 q^{79}+4877 q^{78}-363 q^{77}-6095 q^{76}-8724 q^{75}-6237 q^{74}-678 q^{73}+5881 q^{72}+9406 q^{71}+7380 q^{70}+1744 q^{69}-5432 q^{68}-9753 q^{67}-8236 q^{66}-2654 q^{65}+4922 q^{64}+9773 q^{63}+8701 q^{62}+3378 q^{61}-4308 q^{60}-9623 q^{59}-8990 q^{58}-3863 q^{57}+3885 q^{56}+9349 q^{55}+8943 q^{54}+4156 q^{53}-3406 q^{52}-9030 q^{51}-8916 q^{50}-4321 q^{49}+3157 q^{48}+8713 q^{47}+8661 q^{46}+4390 q^{45}-2770 q^{44}-8353 q^{43}-8548 q^{42}-4474 q^{41}+2528 q^{40}+7984 q^{39}+8242 q^{38}+4565 q^{37}-2034 q^{36}-7511 q^{35}-8097 q^{34}-4735 q^{33}+1607 q^{32}+6945 q^{31}+7724 q^{30}+4942 q^{29}-870 q^{28}-6211 q^{27}-7459 q^{26}-5180 q^{25}+177 q^{24}+5333 q^{23}+6882 q^{22}+5385 q^{21}+766 q^{20}-4265 q^{19}-6306 q^{18}-5507 q^{17}-1574 q^{16}+3085 q^{15}+5380 q^{14}+5419 q^{13}+2444 q^{12}-1778 q^{11}-4386 q^{10}-5126 q^9-3029 q^8+566 q^7+3117 q^6+4495 q^5+3415 q^4+586 q^3-1862 q^2-3669 q-3388-1398 q^{-1} +620 q^{-2} +2585 q^{-3} +3042 q^{-4} +1904 q^{-5} +400 q^{-6} -1494 q^{-7} -2398 q^{-8} -1972 q^{-9} -1098 q^{-10} +483 q^{-11} +1570 q^{-12} +1706 q^{-13} +1431 q^{-14} +283 q^{-15} -763 q^{-16} -1208 q^{-17} -1380 q^{-18} -724 q^{-19} +88 q^{-20} +618 q^{-21} +1094 q^{-22} +845 q^{-23} +334 q^{-24} -108 q^{-25} -678 q^{-26} -725 q^{-27} -504 q^{-28} -223 q^{-29} +290 q^{-30} +467 q^{-31} +459 q^{-32} +383 q^{-33} -4 q^{-34} -227 q^{-35} -323 q^{-36} -357 q^{-37} -118 q^{-38} +22 q^{-39} +144 q^{-40} +274 q^{-41} +166 q^{-42} +61 q^{-43} -44 q^{-44} -157 q^{-45} -106 q^{-46} -85 q^{-47} -43 q^{-48} +71 q^{-49} +76 q^{-50} +74 q^{-51} +38 q^{-52} -30 q^{-53} -20 q^{-54} -34 q^{-55} -45 q^{-56} -4 q^{-57} +10 q^{-58} +26 q^{-59} +24 q^{-60} -5 q^{-61} +3 q^{-62} -2 q^{-63} -14 q^{-64} -6 q^{-65} -4 q^{-66} +6 q^{-67} +8 q^{-68} -2 q^{-69} +2 q^{-71} -2 q^{-72} - q^{-73} -2 q^{-74} + q^{-75} +2 q^{-76} - q^{-77} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 10]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[5, 13, 6, 12],
X[13, 7, 14, 6], X[11, 1, 12, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 10]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 1, -4, 5, -8, 2, -3, 7, -6, 4, -5, 3, -7, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 10]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, 14, 16, 6, 10]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 10]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, -2, -2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 10]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 10]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_10_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 10]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 10]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 6 2 3
-7 + t - -- + - + 6 t - 3 t + t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 10]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 3 z + 3 z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 10], Knot[10, 143], Knot[11, NonAlternating, 106]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 10]], KnotSignature[Knot[8, 10]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{27, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 10]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6
-3 - q + - + 5 q - 4 q + 5 q - 4 q + 2 q - q
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 10]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 10]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -2 2 4 6 8 10 12 14 18
-q - q + 2 q + q + 4 q + q + q - q - 2 q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 10]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6
3 6 2 3 z 9 z 4 z 5 z z
-2 - -- + -- - 3 z - ---- + ---- - z - -- + ---- + --
4 2 4 2 4 2 2
a a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 10]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
3 6 z 2 z 6 z 5 z 2 z 6 z
-2 - -- - -- - -- + --- + --- + --- + 2 a z + 5 z - -- + ---- +
4 2 7 5 3 a 6 4
a a a a a a a
2 3 3 3 3 4 4
12 z z 3 z 9 z 8 z 3 4 2 z 5 z
----- + -- - ---- - ---- - ---- - 3 a z - 6 z + ---- - ---- -
2 7 5 3 a 6 4
a a a a a a
4 5 5 5 6 6 7 7
13 z 3 z 3 z z 5 6 3 z 5 z z z
----- + ---- + ---- + -- + a z + 2 z + ---- + ---- + -- + --
2 5 3 a 4 2 3 a
a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 10]], Vassiliev[3][Knot[8, 10]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 3}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 10]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 2 q 3 5
3 q + 3 q + ----- + ----- + ---- + --- + - + 2 q t + 2 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4 13 5
3 q t + 2 q t + q t + 3 q t + q t + q t + q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 10], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 2 -5 6 5 6 14 2 3 4
-5 + q - -- - q + -- - -- - -- + -- - 14 q + 21 q - 2 q - 21 q +
6 4 3 2 q
q q q q
5 6 7 8 9 10 11 12
23 q + 2 q - 24 q + 20 q + 3 q - 19 q + 12 q + 3 q -
13 14 15 16 17
9 q + 4 q + q - 2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 16:58, 1 September 2005

8 9.gif

8_9

8 11.gif

8_11

8 10.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 10 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X7283
Gauss code -1, 8, -2, 1, -4, 5, -8, 2, -3, 7, -6, 4, -5, 3, -7, 6
Dowker-Thistlethwaite code 4 8 12 2 14 16 6 10
Conway Notation [3,21,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 10 ML.gif 8 10 AP.gif
[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {1, 3}, {11, 2}, {10, 1}]

[edit Notes on presentations of 8 10]

Knot 8_10.
A graph, knot 8_10.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-8]
Hyperbolic Volume 8.65115
A-Polynomial See Data:8 10/A-polynomial

[edit Notes for 8 10's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 8 10's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_143, K11n106,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (3, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 8 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
13        1-1
11       1 1
9      31 -2
7     21  1
5    23   1
3   32    1
1  13     2
-1 12      -1
-3 1       1
-51        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials