8 8: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=8_8}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 8 | |
|||
k = 8 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,5,-8,2,-6,7,-3,4,-5,3,-7,6/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[10_129]], [[K11n39]], [[K11n45]], [[K11n50]], [[K11n132]], | |
|||
same_jones = [[10_129]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{15}-2 q^{14}-q^{13}+6 q^{12}-4 q^{11}-6 q^{10}+12 q^9-4 q^8-13 q^7+17 q^6-q^5-18 q^4+19 q^3+2 q^2-20 q+17+3 q^{-1} -15 q^{-2} +10 q^{-3} +2 q^{-4} -7 q^{-5} +4 q^{-6} -2 q^{-8} + q^{-9} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+2 q^{29}+q^{28}-2 q^{27}-5 q^{26}+3 q^{25}+9 q^{24}-q^{23}-14 q^{22}-2 q^{21}+17 q^{20}+9 q^{19}-21 q^{18}-15 q^{17}+21 q^{16}+22 q^{15}-19 q^{14}-30 q^{13}+17 q^{12}+35 q^{11}-12 q^{10}-42 q^9+10 q^8+43 q^7-2 q^6-50 q^5+3 q^4+46 q^3+6 q^2-49 q-2+38 q^{-1} +10 q^{-2} -35 q^{-3} -6 q^{-4} +24 q^{-5} +6 q^{-6} -17 q^{-7} -3 q^{-8} +10 q^{-9} + q^{-10} -6 q^{-11} +4 q^{-13} -2 q^{-14} - q^{-15} +2 q^{-17} - q^{-18} </math> | |
|||
coloured_jones_4 = <math>q^{50}-2 q^{49}-q^{48}+2 q^{47}+q^{46}+6 q^{45}-7 q^{44}-7 q^{43}+q^{41}+24 q^{40}-6 q^{39}-15 q^{38}-12 q^{37}-13 q^{36}+45 q^{35}+8 q^{34}-7 q^{33}-25 q^{32}-47 q^{31}+52 q^{30}+23 q^{29}+21 q^{28}-20 q^{27}-85 q^{26}+37 q^{25}+21 q^{24}+59 q^{23}+5 q^{22}-113 q^{21}+11 q^{20}+3 q^{19}+91 q^{18}+39 q^{17}-125 q^{16}-16 q^{15}-22 q^{14}+116 q^{13}+71 q^{12}-129 q^{11}-39 q^{10}-44 q^9+131 q^8+95 q^7-124 q^6-56 q^5-61 q^4+130 q^3+108 q^2-103 q-56-73 q^{-1} +103 q^{-2} +102 q^{-3} -66 q^{-4} -39 q^{-5} -70 q^{-6} +61 q^{-7} +71 q^{-8} -34 q^{-9} -10 q^{-10} -48 q^{-11} +24 q^{-12} +34 q^{-13} -17 q^{-14} +8 q^{-15} -23 q^{-16} +7 q^{-17} +11 q^{-18} -11 q^{-19} +10 q^{-20} -7 q^{-21} +2 q^{-22} +2 q^{-23} -6 q^{-24} +5 q^{-25} - q^{-26} + q^{-27} -2 q^{-29} + q^{-30} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+2 q^{74}+q^{73}-2 q^{72}-q^{71}-2 q^{70}-2 q^{69}+5 q^{68}+9 q^{67}-5 q^{65}-10 q^{64}-13 q^{63}+2 q^{62}+20 q^{61}+21 q^{60}+5 q^{59}-15 q^{58}-34 q^{57}-25 q^{56}+11 q^{55}+39 q^{54}+43 q^{53}+11 q^{52}-37 q^{51}-60 q^{50}-37 q^{49}+17 q^{48}+68 q^{47}+70 q^{46}+9 q^{45}-59 q^{44}-90 q^{43}-56 q^{42}+37 q^{41}+107 q^{40}+97 q^{39}+q^{38}-104 q^{37}-138 q^{36}-52 q^{35}+90 q^{34}+173 q^{33}+104 q^{32}-66 q^{31}-192 q^{30}-159 q^{29}+26 q^{28}+214 q^{27}+208 q^{26}+6 q^{25}-215 q^{24}-255 q^{23}-50 q^{22}+228 q^{21}+295 q^{20}+74 q^{19}-218 q^{18}-332 q^{17}-118 q^{16}+237 q^{15}+359 q^{14}+129 q^{13}-216 q^{12}-388 q^{11}-173 q^{10}+235 q^9+403 q^8+174 q^7-198 q^6-411 q^5-223 q^4+202 q^3+406 q^2+215 q-141-382 q^{-1} -253 q^{-2} +122 q^{-3} +346 q^{-4} +230 q^{-5} -60 q^{-6} -286 q^{-7} -232 q^{-8} +33 q^{-9} +222 q^{-10} +192 q^{-11} +7 q^{-12} -159 q^{-13} -156 q^{-14} -21 q^{-15} +101 q^{-16} +110 q^{-17} +31 q^{-18} -58 q^{-19} -76 q^{-20} -25 q^{-21} +28 q^{-22} +45 q^{-23} +18 q^{-24} -9 q^{-25} -23 q^{-26} -16 q^{-27} +3 q^{-28} +14 q^{-29} +4 q^{-30} +2 q^{-31} -8 q^{-33} -3 q^{-34} +5 q^{-35} -2 q^{-36} +2 q^{-37} +4 q^{-38} -3 q^{-39} -2 q^{-40} + q^{-41} - q^{-42} +2 q^{-44} - q^{-45} </math> | |
|||
coloured_jones_6 = <math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+4 q^{98}-7 q^{97}-9 q^{96}+3 q^{95}+4 q^{94}+11 q^{93}+2 q^{92}+18 q^{91}-14 q^{90}-27 q^{89}-13 q^{88}-7 q^{87}+16 q^{86}+9 q^{85}+65 q^{84}+6 q^{83}-30 q^{82}-37 q^{81}-47 q^{80}-21 q^{79}-24 q^{78}+111 q^{77}+60 q^{76}+30 q^{75}-10 q^{74}-58 q^{73}-90 q^{72}-139 q^{71}+78 q^{70}+64 q^{69}+116 q^{68}+100 q^{67}+49 q^{66}-82 q^{65}-267 q^{64}-54 q^{63}-70 q^{62}+100 q^{61}+200 q^{60}+269 q^{59}+82 q^{58}-267 q^{57}-171 q^{56}-313 q^{55}-89 q^{54}+154 q^{53}+472 q^{52}+354 q^{51}-85 q^{50}-146 q^{49}-531 q^{48}-389 q^{47}-69 q^{46}+540 q^{45}+606 q^{44}+210 q^{43}+35 q^{42}-628 q^{41}-682 q^{40}-390 q^{39}+472 q^{38}+759 q^{37}+508 q^{36}+292 q^{35}-615 q^{34}-899 q^{33}-705 q^{32}+340 q^{31}+827 q^{30}+750 q^{29}+534 q^{28}-557 q^{27}-1050 q^{26}-957 q^{25}+220 q^{24}+859 q^{23}+934 q^{22}+715 q^{21}-508 q^{20}-1162 q^{19}-1146 q^{18}+133 q^{17}+887 q^{16}+1075 q^{15}+844 q^{14}-464 q^{13}-1239 q^{12}-1287 q^{11}+41 q^{10}+880 q^9+1171 q^8+956 q^7-367 q^6-1237 q^5-1374 q^4-105 q^3+768 q^2+1170 q+1047-174 q^{-1} -1085 q^{-2} -1342 q^{-3} -283 q^{-4} +519 q^{-5} +1000 q^{-6} +1029 q^{-7} +62 q^{-8} -766 q^{-9} -1118 q^{-10} -382 q^{-11} +213 q^{-12} +667 q^{-13} +839 q^{-14} +210 q^{-15} -397 q^{-16} -743 q^{-17} -328 q^{-18} +309 q^{-20} +534 q^{-21} +212 q^{-22} -137 q^{-23} -382 q^{-24} -181 q^{-25} -65 q^{-26} +79 q^{-27} +264 q^{-28} +128 q^{-29} -25 q^{-30} -157 q^{-31} -59 q^{-32} -46 q^{-33} -11 q^{-34} +111 q^{-35} +54 q^{-36} + q^{-37} -56 q^{-38} -7 q^{-39} -19 q^{-40} -25 q^{-41} +43 q^{-42} +18 q^{-43} +4 q^{-44} -19 q^{-45} +5 q^{-46} -7 q^{-47} -17 q^{-48} +16 q^{-49} +4 q^{-50} +4 q^{-51} -6 q^{-52} +4 q^{-53} -2 q^{-54} -8 q^{-55} +5 q^{-56} +2 q^{-58} - q^{-59} + q^{-60} -2 q^{-62} + q^{-63} </math> | |
|||
coloured_jones_7 = <math>-q^{140}+2 q^{139}+q^{138}-2 q^{137}-q^{136}-2 q^{135}+2 q^{134}-2 q^{132}+7 q^{131}+6 q^{130}-2 q^{129}-4 q^{128}-13 q^{127}-4 q^{126}-9 q^{124}+18 q^{123}+23 q^{122}+16 q^{121}+9 q^{120}-27 q^{119}-24 q^{118}-21 q^{117}-43 q^{116}+4 q^{115}+33 q^{114}+49 q^{113}+77 q^{112}+7 q^{111}-12 q^{110}-32 q^{109}-109 q^{108}-69 q^{107}-40 q^{106}+15 q^{105}+130 q^{104}+97 q^{103}+97 q^{102}+76 q^{101}-89 q^{100}-116 q^{99}-177 q^{98}-180 q^{97}+12 q^{96}+60 q^{95}+195 q^{94}+296 q^{93}+139 q^{92}+67 q^{91}-148 q^{90}-373 q^{89}-293 q^{88}-273 q^{87}-3 q^{86}+366 q^{85}+411 q^{84}+514 q^{83}+262 q^{82}-228 q^{81}-460 q^{80}-750 q^{79}-577 q^{78}-18 q^{77}+361 q^{76}+896 q^{75}+931 q^{74}+387 q^{73}-134 q^{72}-950 q^{71}-1232 q^{70}-794 q^{69}-228 q^{68}+840 q^{67}+1448 q^{66}+1226 q^{65}+685 q^{64}-599 q^{63}-1559 q^{62}-1605 q^{61}-1183 q^{60}+250 q^{59}+1527 q^{58}+1903 q^{57}+1700 q^{56}+190 q^{55}-1405 q^{54}-2132 q^{53}-2160 q^{52}-646 q^{51}+1183 q^{50}+2250 q^{49}+2583 q^{48}+1126 q^{47}-933 q^{46}-2318 q^{45}-2934 q^{44}-1548 q^{43}+654 q^{42}+2317 q^{41}+3230 q^{40}+1952 q^{39}-396 q^{38}-2323 q^{37}-3464 q^{36}-2271 q^{35}+160 q^{34}+2287 q^{33}+3675 q^{32}+2578 q^{31}+14 q^{30}-2306 q^{29}-3832 q^{28}-2785 q^{27}-181 q^{26}+2282 q^{25}+4005 q^{24}+3018 q^{23}+281 q^{22}-2337 q^{21}-4118 q^{20}-3156 q^{19}-411 q^{18}+2302 q^{17}+4257 q^{16}+3370 q^{15}+515 q^{14}-2338 q^{13}-4324 q^{12}-3478 q^{11}-681 q^{10}+2199 q^9+4373 q^8+3687 q^7+877 q^6-2110 q^5-4318 q^4-3738 q^3-1121 q^2+1787 q+4157+3852 q^{-1} +1387 q^{-2} -1500 q^{-3} -3863 q^{-4} -3738 q^{-5} -1611 q^{-6} +1019 q^{-7} +3423 q^{-8} +3585 q^{-9} +1790 q^{-10} -617 q^{-11} -2879 q^{-12} -3209 q^{-13} -1837 q^{-14} +175 q^{-15} +2267 q^{-16} +2766 q^{-17} +1751 q^{-18} +142 q^{-19} -1658 q^{-20} -2213 q^{-21} -1558 q^{-22} -363 q^{-23} +1133 q^{-24} +1662 q^{-25} +1269 q^{-26} +446 q^{-27} -695 q^{-28} -1157 q^{-29} -964 q^{-30} -445 q^{-31} +396 q^{-32} +763 q^{-33} +664 q^{-34} +369 q^{-35} -210 q^{-36} -452 q^{-37} -424 q^{-38} -286 q^{-39} +103 q^{-40} +261 q^{-41} +256 q^{-42} +195 q^{-43} -61 q^{-44} -142 q^{-45} -133 q^{-46} -121 q^{-47} +29 q^{-48} +67 q^{-49} +74 q^{-50} +90 q^{-51} -30 q^{-52} -47 q^{-53} -32 q^{-54} -40 q^{-55} +18 q^{-56} +8 q^{-57} +17 q^{-58} +44 q^{-59} -14 q^{-60} -21 q^{-61} -8 q^{-62} -13 q^{-63} +11 q^{-64} -3 q^{-65} +2 q^{-66} +22 q^{-67} -5 q^{-68} -8 q^{-69} -2 q^{-70} -6 q^{-71} +5 q^{-72} -3 q^{-73} +8 q^{-75} - q^{-76} -2 q^{-77} -2 q^{-79} + q^{-80} - q^{-81} +2 q^{-83} - q^{-84} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], |
|||
X[13, 7, 14, 6], X[9, 1, 10, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, 16, 14, 6, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, -1, -3, 2, -3, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 8]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 8]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_8_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 8]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, {4, 5}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 8]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 2 |
|||
9 + -- - - - 6 t + 2 t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 8]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 2 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39], |
|||
Knot[11, NonAlternating, 45], Knot[11, NonAlternating, 50], |
|||
Knot[11, NonAlternating, 132]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 8]], KnotSignature[Knot[8, 8]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{25, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 8]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 3 2 3 4 5 |
|||
5 - q + -- - - - 4 q + 4 q - 3 q + 2 q - q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 8], Knot[10, 129]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 8]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -4 2 2 4 8 10 16 |
|||
1 - q - q + -- + 2 q + q + q - q - q |
|||
2 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 8]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 |
|||
-4 -2 2 2 z 2 z 2 2 4 z |
|||
2 - a + a - a + 2 z - -- + ---- - a z + z + -- |
|||
4 2 2 |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 8]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 -2 2 2 z 3 z z 3 2 4 z 5 z |
|||
2 - a - a + a + --- + --- + - - a z - a z - z + ---- + ---- - |
|||
5 3 a 4 2 |
|||
a a a a |
|||
3 3 3 4 4 |
|||
2 2 3 z 5 z 3 z 3 3 4 6 z 9 z 2 4 |
|||
2 a z - ---- - ---- - ---- + a z - z - ---- - ---- + 2 a z + |
|||
5 3 a 4 2 |
|||
a a a a |
|||
5 5 6 6 7 7 |
|||
z z 5 6 2 z 4 z z z |
|||
-- + -- + 2 a z + 2 z + ---- + ---- + -- + -- |
|||
5 a 4 2 3 a |
|||
a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 8]], Vassiliev[3][Knot[8, 8]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 8]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 1 1 2 1 3 |
|||
- + 3 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + |
|||
q 7 3 5 2 3 2 3 q t |
|||
q t q t q t q t |
|||
3 2 5 2 5 3 7 3 7 4 9 4 11 5 |
|||
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 8], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 2 4 7 2 10 15 3 2 3 |
|||
17 + q - -- + -- - -- + -- + -- - -- + - - 20 q + 2 q + 19 q - |
|||
8 6 5 4 3 2 q |
|||
q q q q q q |
|||
4 5 6 7 8 9 10 11 12 |
|||
18 q - q + 17 q - 13 q - 4 q + 12 q - 6 q - 4 q + 6 q - |
|||
13 14 15 |
|||
q - 2 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,1,10,16 X15,11,16,10 X7283 |
Gauss code | -1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6 |
Dowker-Thistlethwaite code | 4 8 12 2 16 14 6 10 |
Conway Notation | [2312] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{10, 2}, {1, 8}, {4, 9}, {8, 10}, {3, 5}, {2, 4}, {6, 3}, {5, 7}, {9, 6}, {7, 1}] |
[edit Notes on presentations of 8 8]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 8"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,1,10,16 X15,11,16,10 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 16 14 6 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2312] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 2}, {1, 8}, {4, 9}, {8, 10}, {3, 5}, {2, 4}, {6, 3}, {5, 7}, {9, 6}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 8"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_129, K11n39, K11n45, K11n50, K11n132,}
Same Jones Polynomial (up to mirroring, ): {10_129,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 8"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_129, K11n39, K11n45, K11n50, K11n132,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_129,} |
Vassiliev invariants
V2 and V3: | (2, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|