Drawing with TubePlot: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(13 intermediate revisions by 7 users not shown)
Line 6: Line 6:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 1 |
n = 2 |
in = <nowiki>TubePlot</nowiki> |
in = <nowiki>TubePlot</nowiki> |
out= <nowiki>TubePlot[gamma, {t, t0, t1}, r, opts] plots the space curve gamma with the variable t running from t0 to t1, as a tube of radius r. The available options are TubeSubdivision, TubeFraming and TubePlotPrelude. All other options are passed on to Graphics3D. TubePlot[TorusKnot[m, n], opts] produces a tube plot of the (m,n) torus knot.</nowiki>}}
out= <nowiki>TubePlot[gamma, {t, t0, t1}, r, opts] plots the space curve gamma with the variable t running from t0 to t1, as a tube of radius r. The available options are TubeSubdivision, TubeFraming and TubePlotPrelude. All other options are passed on to Graphics3D. TubePlot[TorusKnot[m, n], opts] produces a tube plot of the (m,n) torus knot.</nowiki>}}
Line 18: Line 18:
n = 3 |
n = 3 |
in = <nowiki>Show[TubePlot[{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.1]]</nowiki> |
in = <nowiki>Show[TubePlot[{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.1]]</nowiki> |
img= Drawing_with_TubePlot_Out_2.gif |
img= Drawing_with_TubePlot_Out_3.gif |
out= <nowiki>-Graphics3D-</nowiki>}}
out= <nowiki>-Graphics3D-</nowiki>}}
<!--END-->
<!--END-->
Line 53: Line 53:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 8 |
n = 7 |
in = <nowiki>Show[TubePlot[
in = <nowiki>Show[TubePlot[
{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.3, TubeSubdivision -> {6, 3}
{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.3, TubeSubdivision -> {6, 3}
Line 70: Line 70:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 10 |
n = 8 |
in = <nowiki>Show[TubePlot[
in = <nowiki>Show[TubePlot[
{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.2,
{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.2,
Line 76: Line 76:
TubeFraming -> {Cos[2t]Cos[t], Cos[2t]Sin[t], Sin[3t]}
TubeFraming -> {Cos[2t]Cos[t], Cos[2t]Sin[t], Sin[3t]}
]]</nowiki> |
]]</nowiki> |
img= Drawing_with_TubePlot_Out_9.gif |
img= Drawing_with_TubePlot_Out_8.gif |
out= <nowiki>-Graphics3D-</nowiki>}}
out= <nowiki>-Graphics3D-</nowiki>}}
<!--END-->
<!--END-->
Line 92: Line 92:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 12 |
n = 9 |
in = <nowiki>Show[TubePlot[
in = <nowiki>Show[TubePlot[
{Cos[2t], Sin[2t], 0} +
{Cos[2t], Sin[2t], 0} +
Line 101: Line 101:
Boxed -> False, ViewPoint -> {0,0,1}
Boxed -> False, ViewPoint -> {0,0,1}
]]</nowiki> |
]]</nowiki> |
img= Drawing_with_TubePlot_Out_11.gif |
img= Drawing_with_TubePlot_Out_9.gif |
out= <nowiki>-Graphics3D-</nowiki>}}
out= <nowiki>-Graphics3D-</nowiki>}}
<!--END-->
<!--END-->
Line 110: Line 110:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 14 |
n = 10 |
in = <nowiki>Show[TubePlot[TorusKnot[3, 5]]]</nowiki> |
in = <nowiki>Show[TubePlot[TorusKnot[3, 5]]]</nowiki> |
img= Drawing_with_TubePlot_Out_13.gif |
img= Drawing_with_TubePlot_Out_10.gif |
out= <nowiki>-Graphics3D-</nowiki>}}
out= <nowiki>-Graphics3D-</nowiki>}}
<!--END-->
<!--END-->
Line 120: Line 120:
</span>
</span>


There may be some independent interest in the routine <code>TubePlot</code>, and hence it is available also as an independent package. Here it is: [[Media:TubePlot.m|TubePlot.m]].
There may be some independent interest in the routine <code>TubePlot</code>, and hence it is available also as an independent package. Here it is: [[Media:TubePlot.m|TubePlot.m]] ([[Image:TubePlot.m|file description]]).

Latest revision as of 17:24, 21 February 2013


(For In[1] see Setup)

In[2]:= ?TubePlot
TubePlot[gamma, {t, t0, t1}, r, opts] plots the space curve gamma with the variable t running from t0 to t1, as a tube of radius r. The available options are TubeSubdivision, TubeFraming and TubePlotPrelude. All other options are passed on to Graphics3D. TubePlot[TorusKnot[m, n], opts] produces a tube plot of the (m,n) torus knot.

Thus here's a thin unknot:

In[3]:= Show[TubePlot[{Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.1]]
Drawing with TubePlot Out 3.gif
Out[3]= -Graphics3D-
In[4]:= ?TubeSubdivision
TubeSubdivision is an option for TubePlot. TubePlot[__, TubeSubdivision -> {l, m} draws the tube subdivided to l pieces lengthwise and m pieces around. The default is TubeSubdivision -> {50, 12}.
In[5]:= ?TubeFraming
TubeFraming is an option for TubePlot. TubePlot[gamma, {t, __}, _, TubeFraming -> n] sets the framing of the tube (visible when TubeSubdivision -> {l, m} with small m) to be the vector n, which in itself may be a function of t. Thus TubeFraming -> {0,0,1} is "blackboard framing". TubeFraming -> Normal (default) uses the normal vector of the curve gamma.
In[6]:= ?TubePlotPrelude
TubePlotPrelude is an option for TubePlot. Its value is passed to Graphics3D before the main part of the plot, allowing to set various graphics options. For example, TubePlotPrelude -> EdgeForm[{}] will suppress the drawing of edges between the polygons making up the tube. The default is TubePlotPrelude -> {}.

Here's the same unknot, made thicker and not as smooth:

In[7]:= Show[TubePlot[ {Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.3, TubeSubdivision -> {6, 3} ]]
Drawing with TubePlot Out 7.gif
Out[7]= -Graphics3D-

Let's play with the framing now:

In[8]:= Show[TubePlot[ {Cos[t], Sin[t], 0}, {t, 0, 2Pi}, 0.2, TubeSubdivision -> {50, 2}, TubeFraming -> {Cos[2t]Cos[t], Cos[2t]Sin[t], Sin[3t]} ]]
Drawing with TubePlot Out 8.gif
Out[8]= -Graphics3D-

Here's an example that uses a prelude and passes options on to Graphics3D:

In[9]:= Show[TubePlot[ {Cos[2t], Sin[2t], 0} + 0.5{Cos[3t]Cos[2t], Cos[3t]Sin[2t], -Sin[3t]}, {t, 0, 2Pi}, 1/3, TubeSubdivision -> {280, 12}, TubeFraming -> {0,0,1}, TubePlotPrelude -> EdgeForm[{}], Boxed -> False, ViewPoint -> {0,0,1} ]]
Drawing with TubePlot Out 9.gif
Out[9]= -Graphics3D-

The last example serves as the basis for the definition of TubePlot[TorusKnot[m, n]]. Here's a final example:

In[10]:= Show[TubePlot[TorusKnot[3, 5]]]
Drawing with TubePlot Out 10.gif
Out[10]= -Graphics3D-

Standalone TubePlot

There may be some independent interest in the routine TubePlot, and hence it is available also as an independent package. Here it is: TubePlot.m (File:TubePlot.m).