7 5: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
{{Knot Presentations|name=7_5}}
{{Knot Presentations|name=7_5}}
{{3D Invariants|name=7_5}}
{{3D Invariants|name=7_5}}
{{Polynomial Invariants|name=7_5}}
===Polynomial invariants===
{| style="margin-left: 1em;"
|-
|'''[[The Jones Polynomial|Jones polynomial]]'''
|style="padding-left: 1em;" | {{Data:7_5/Jones Polynomial}}
|-
|'''[[The Alexander-Conway Polynomial|Alexander polynomial]]'''
|style="padding-left: 1em;" | {{Data:7_5/Alexander Polynomial}}
|-
|'''[[The Alexander-Conway Polynomial|Conway polynomial]]'''
|style="padding-left: 1em;" | {{Data:7_5/Conway Polynomial}}
|-
|'''[[The Determinant and the Signature|Determinant]]'''
|style="padding-left: 1em;" | {{Data:7_5/Determinant}}
|-
|'''[[The Determinant and the Signature|Signature]]'''
|style="padding-left: 1em;" | {{Data:7_5/Signature}}
|-
|'''[[The HOMFLY-PT Polynomial|HOMFLY-PT polynomial]]'''
|style="padding-left: 1em;" | {{Data:7_5/HOMFLYPT Polynomial}}
|-
|'''[[The Kauffman Polynomial|Kauffman polynomial]]'''
|style="padding-left: 1em;" | {{Data:7_5/Kauffman Polynomial}}
|-
| ([[Viewing Knot Invariants in Other Formats|other formats]])
|}
{{Vassiliev Invariants|name=7_5}}
{{Vassiliev Invariants|name=7_5}}
{{Khovanov Invariants|name=7_5}}
{{Khovanov Invariants|name=7_5}}

Revision as of 17:58, 25 August 2005

[[Image:7_4.{{{ext}}}|80px|link=7_4]]

7_4

[[Image:7_6.{{{ext}}}|80px|link=7_6]]

7_6

Visit 7 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit [{{{KnotilusURL}}} 7 5's page] at Knotilus!

Visit 7 5's page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,14,8,1 X13,6,14,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 10 12 14 2 8 6
Conway Notation [322]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [math]\displaystyle{ \text{$\$$Failed} }[/math]
Hyperbolic Volume 6.44354
A-Polynomial See Data:7 5/A-polynomial

[edit Notes for 7 5's three dimensional invariants]

Polynomial invariants

Jones polynomial [math]\displaystyle{ - q^{-9} +2 q^{-8} -3 q^{-7} +3 q^{-6} -3 q^{-5} +3 q^{-4} - q^{-3} + q^{-2} }[/math]
Alexander polynomial [math]\displaystyle{ 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+4 z^2+1 }[/math]
Determinant 17
Signature -4
HOMFLY-PT polynomial [math]\displaystyle{ a^8 \left(-z^2\right)-a^8+a^6 z^4+2 a^6 z^2+a^4 z^4+3 a^4 z^2+2 a^4 }[/math]
Kauffman polynomial [math]\displaystyle{ a^{11} z^3-a^{11} z+2 a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-2 a^9 z^3+a^9 z+a^8 z^6+a^8 z^2-a^8+3 a^7 z^5-4 a^7 z^3+a^7 z+a^6 z^6-a^6 z^4+a^5 z^5-a^5 z^3-a^5 z+a^4 z^4-3 a^4 z^2+2 a^4 }[/math]
(other formats)

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{968}{3} }[/math] [math]\displaystyle{ \frac{136}{3} }[/math] [math]\displaystyle{ -1024 }[/math] [math]\displaystyle{ -\frac{5440}{3} }[/math] [math]\displaystyle{ -\frac{928}{3} }[/math] [math]\displaystyle{ -224 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 2048 }[/math] [math]\displaystyle{ \frac{15488}{3} }[/math] [math]\displaystyle{ \frac{2176}{3} }[/math] [math]\displaystyle{ \frac{156422}{15} }[/math] [math]\displaystyle{ \frac{5912}{15} }[/math] [math]\displaystyle{ \frac{170888}{45} }[/math] [math]\displaystyle{ \frac{730}{9} }[/math] [math]\displaystyle{ \frac{7142}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Template:Khovanov Invariants Template:Quantum Invariants