The HOMFLY-PT Polynomial: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Manual TOC Sidebar}} |
{{Manual TOC Sidebar}} |
||
The ''HOMFLY-PT polynomial'' <math>H(L)(a,z)</math> (see {{ref|HOMFLY}} and {{ref|PT}} of a knot or link <math>L</math> is defined by the skein relation |
|||
<center><math> |
|||
aH\left(\{overcrossing\}\right) |
|||
-a^{-1}H\left(\{undercrossing\}\right) |
|||
= zH\left(\{smoothing\}\right) |
|||
</math></center> |
|||
and by the initial condition <math>H(\{bigcirc\})</math>=1. |
|||
<code>KnotTheory`</code> knows about the HOMFLY-PT polynomial: |
|||
{{Startup Note}} |
|||
<!--$$?HOMFLYPT$$--> |
|||
<!--END--> |
|||
Thus, for example, here's the HOMFLY-PT polynomial of the knot [[8_1]]: |
|||
<!--$$K = Knot[8, 1];$$--> |
|||
<!--END--> |
|||
<!--$$HOMFLYPT[Knot[8, 1]][a, z]$$--> |
|||
<!--END--> |
|||
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at <math>a=q^{-1}</math> and <math>z=q^{1/2}-q^{-1/2}</math> and to the Conway polynomial at <math>a=1</math>. Indeed, |
|||
<!--$${Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]}$$--> |
|||
<!--END--> |
|||
<!--$${HOMFLYPT[K][1, z], Conway[K][z]}$$--> |
|||
<!--END--> |
|||
In our parametirzation of the <math>A_2</math> link invariant, it satisfies |
|||
<center><math>A_2(L)(q) = (-1)^c(q^2+1+q^{-2})H(L)(q^{-3},\,q-q^{-1})</math>,</center> |
|||
where <math>L</math> is some knot or link and where <math>c</math> is the number of components of <math>L</math>. Let us verify this fact for the Whitehead link, [[L5a1]]: |
|||
<!--$$L = Link[5, Alternating, 1];$$--> |
|||
<!--END--> |
|||
<!--$$Simplify[{\n |
|||
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],\n |
|||
A2Invariant[L][q]\n |
|||
}]$$--> |
|||
<!--END--> |
|||
{{note|HOMFLY}} J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, ''A new polynomial invariant of knots and links'', Bull. Amer. Math. Soc. '''12''' (1985) 239-246. |
|||
{{note|PT}} J. Przytycki and P. Traczyk, <math>Conway Algebras and Skein Equivalence of Links</math>, Proc. Amer. Math. Soc. '''100''' (1987) 744-748. |
Revision as of 05:56, 27 August 2005
The HOMFLY-PT polynomial (see [HOMFLY] and [PT] of a knot or link is defined by the skein relation
and by the initial condition =1.
KnotTheory`
knows about the HOMFLY-PT polynomial:
(For In[1] see Setup)
Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,
In our parametirzation of the link invariant, it satisfies
where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:
[HOMFLY] ^ J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.
[PT] ^ J. Przytycki and P. Traczyk, , Proc. Amer. Math. Soc. 100 (1987) 744-748.