9 15: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=15|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=15|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 131: Line 123:
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:10, 28 August 2005

9 14.gif

9_14

9 16.gif

9_16

9 15.gif Visit 9 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 15's page at Knotilus!

Visit 9 15's page at the original Knot Atlas!

9 15 Quick Notes


9 15 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X7,10,8,11 X3948 X9,3,10,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X11,1,12,18 X17,13,18,12
Gauss code -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 8 14 10 2 18 16 6 12
Conway Notation [2322]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-10]
Hyperbolic Volume 9.8855
A-Polynomial See Data:9 15/A-polynomial

[edit Notes for 9 15's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 15's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        1 1
13       31 -2
11      31  2
9     33   0
7    43    1
5   23     1
3  24      -2
1 13       2
-1 1        -1
-31         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 15]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 15]]
Out[3]=  
PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], 

X[11, 1, 12, 18], X[17, 13, 18, 12]]
In[4]:=
GaussCode[Knot[9, 15]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]
In[5]:=
BR[Knot[9, 15]]
Out[5]=  
BR[5, {1, 1, 1, 2, -1, -3, 2, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 15]][t]
Out[6]=  
      2    10             2

-15 - -- + -- + 10 t - 2 t

      2   t
t
In[7]:=
Conway[Knot[9, 15]][z]
Out[7]=  
       2      4
1 + 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 15], Knot[10, 165], Knot[11, NonAlternating, 63], 
  Knot[11, NonAlternating, 101]}
In[9]:=
{KnotDet[Knot[9, 15]], KnotSignature[Knot[9, 15]]}
Out[9]=  
{39, 2}
In[10]:=
J=Jones[Knot[9, 15]][q]
Out[10]=  
     1            2      3      4      5      6      7    8

-2 + - + 4 q - 6 q + 7 q - 6 q + 6 q - 4 q + 2 q - q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 15]}
In[12]:=
A2Invariant[Knot[9, 15]][q]
Out[12]=  
 -4      2      4      12      16    20    22    24    26
q   + 2 q  - 2 q  + 2 q   + 2 q   - q   + q   - q   - q
In[13]:=
Kauffman[Knot[9, 15]][a, z]
Out[13]=  
                                                               2
    -8    -6    -4    -2   2 z   z    z    z    z      2   3 z

1 - a - a + a + a + --- + -- - -- + -- + - - 2 z + ---- +

                            9     7    5    3   a            8
                           a     a    a    a                a

    2      2      2      3    3      3      3           4      4
 2 z    2 z    3 z    3 z    z    5 z    3 z     4   5 z    4 z
 ---- - ---- - ---- - ---- - -- + ---- - ---- + z  - ---- - ---- + 
   6      4      2      9     7     5     a            8      6
  a      a      a      a     a     a                  a      a

  5      5      5    5      5      6    6    6      6      7      7
 z    3 z    7 z    z    2 z    2 z    z    z    2 z    2 z    4 z
 -- - ---- - ---- - -- + ---- + ---- + -- + -- + ---- + ---- + ---- + 
  9     7      5     3    a       8     6    4     2      7      5
 a     a      a     a            a     a    a     a      a      a

    7    8    8
 2 z    z    z
 ---- + -- + --
   3     6    4
a a a
In[14]:=
{Vassiliev[2][Knot[9, 15]], Vassiliev[3][Knot[9, 15]]}
Out[14]=  
{0, 5}
In[15]:=
Kh[Knot[9, 15]][q, t]
Out[15]=  
         3     1      1    q      3        5        5  2      7  2

3 q + 2 q + ----- + --- + - + 4 q t + 2 q t + 3 q t + 4 q t +

             3  2   q t   t
            q  t

    7  3      9  3      9  4      11  4    11  5      13  5    13  6
 3 q  t  + 3 q  t  + 3 q  t  + 3 q   t  + q   t  + 3 q   t  + q   t  + 

  15  6    17  7
q t + q t