9 14: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
Line 47: | Line 40: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 135: | Line 127: | ||
q t + q t</nowiki></pre></td></tr> |
q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 20:15, 28 August 2005
|
|
![]() |
Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 14's page at Knotilus! Visit 9 14's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
Gauss code | -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
Dowker-Thistlethwaite code | 4 10 12 16 14 2 18 8 6 |
Conway Notation | [41112] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-9 t+15-9 t^{-1} +2 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4-z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 37, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^8+q^6-q^4+2 q^2+ q^{-2} + q^{-4} + q^{-8} -2 q^{-10} - q^{-12} - q^{-16} + q^{-18} + q^{-20} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{44}-3 q^{40}+8 q^{38}-10 q^{36}+11 q^{34}-8 q^{32}+2 q^{30}+4 q^{28}-10 q^{26}+16 q^{24}-16 q^{22}+14 q^{20}-8 q^{18}-q^{16}+11 q^{14}-15 q^{12}+17 q^{10}-12 q^8+3 q^6+6 q^4-10 q^2+10-2 q^{-2} -6 q^{-4} +15 q^{-6} -16 q^{-8} +9 q^{-10} +5 q^{-12} -19 q^{-14} +30 q^{-16} -28 q^{-18} +18 q^{-20} -16 q^{-24} +28 q^{-26} -30 q^{-28} +23 q^{-30} -10 q^{-32} -6 q^{-34} +16 q^{-36} -19 q^{-38} +15 q^{-40} -5 q^{-42} -7 q^{-44} +11 q^{-46} -13 q^{-48} +5 q^{-50} +5 q^{-52} -16 q^{-54} +21 q^{-56} -19 q^{-58} +6 q^{-60} +8 q^{-62} -20 q^{-64} +25 q^{-66} -21 q^{-68} +11 q^{-70} + q^{-72} -10 q^{-74} +16 q^{-76} -14 q^{-78} +10 q^{-80} -2 q^{-82} -2 q^{-84} +3 q^{-86} -4 q^{-88} +3 q^{-90} - q^{-92} + q^{-94} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^5-q^3+2 q+ q^{-5} -2 q^{-7} + q^{-9} - q^{-11} + q^{-13} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-2 q^{18}-q^{16}+4 q^{14}-4 q^{12}+7 q^8-5 q^6-q^4+7 q^2-3-3 q^{-2} +3 q^{-4} +2 q^{-6} -3 q^{-8} -2 q^{-10} +5 q^{-12} - q^{-14} -6 q^{-16} +5 q^{-18} +2 q^{-20} -6 q^{-22} +4 q^{-24} +4 q^{-26} -5 q^{-28} +3 q^{-32} -2 q^{-34} - q^{-36} + q^{-38} } |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-4 q^{26}+8 q^{24}-12 q^{22}+18 q^{20}-28 q^{18}+34 q^{16}-38 q^{14}+43 q^{12}-48 q^{10}+50 q^8-44 q^6+46 q^4-32 q^2+22-24 q^{-4} +50 q^{-6} -80 q^{-8} +102 q^{-10} -118 q^{-12} +126 q^{-14} -126 q^{-16} +108 q^{-18} -91 q^{-20} +62 q^{-22} -30 q^{-24} +34 q^{-28} -50 q^{-30} +70 q^{-32} -76 q^{-34} +71 q^{-36} -62 q^{-38} +48 q^{-40} -36 q^{-42} +21 q^{-44} -12 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}-2 q^{22}+q^{20}+2 q^{18}-q^{16}-4 q^{14}+3 q^{12}+5 q^{10}-3 q^8-2 q^6+6 q^4+4 q^2-2-2 q^{-2} +2 q^{-4} - q^{-8} + q^{-10} -3 q^{-14} +2 q^{-16} + q^{-18} -5 q^{-20} -3 q^{-22} +2 q^{-24} +3 q^{-26} -2 q^{-28} +5 q^{-32} +4 q^{-34} -2 q^{-36} -2 q^{-38} + q^{-40} + q^{-42} -2 q^{-44} -3 q^{-46} + q^{-50} + q^{-52} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-2 q^{20}-q^{18}+4 q^{16}-3 q^{14}-2 q^{12}+6 q^{10}-2 q^8-4 q^6+7 q^4+q^2-1+5 q^{-2} +2 q^{-4} -2 q^{-6} -3 q^{-8} -6 q^{-14} +2 q^{-16} +5 q^{-18} -4 q^{-20} +2 q^{-22} +4 q^{-24} -4 q^{-26} +2 q^{-30} -3 q^{-32} + q^{-34} + q^{-36} - q^{-38} + q^{-40} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+q^{11}+q^7-q^5+2 q^3+ q^{-1} + q^{-3} + q^{-5} + q^{-7} + q^{-11} -2 q^{-13} - q^{-15} -2 q^{-17} - q^{-21} + q^{-23} + q^{-25} + q^{-27} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}+2 q^{20}-3 q^{18}+4 q^{16}-5 q^{14}+6 q^{12}-6 q^{10}+6 q^8-4 q^6+3 q^4+q^2-3+7 q^{-2} -8 q^{-4} +12 q^{-6} -11 q^{-8} +12 q^{-10} -10 q^{-12} +8 q^{-14} -6 q^{-16} + q^{-18} -4 q^{-22} +4 q^{-24} -6 q^{-26} +6 q^{-28} -6 q^{-30} +5 q^{-32} -3 q^{-34} +3 q^{-36} - q^{-38} + q^{-40} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{32}-2 q^{30}+q^{28}+4 q^{26}+q^{24}-4 q^{22}-4 q^{20}+2 q^{18}+6 q^{16}+2 q^{14}-5 q^{12}-4 q^{10}+3 q^8+7 q^6-4 q^2+6 q^{-2} +3 q^{-4} -3 q^{-6} -4 q^{-8} +2 q^{-10} +3 q^{-12} -2 q^{-14} -5 q^{-16} +3 q^{-20} - q^{-22} -5 q^{-24} - q^{-26} +6 q^{-28} +4 q^{-30} -3 q^{-32} -6 q^{-34} +2 q^{-36} +7 q^{-38} +3 q^{-40} -5 q^{-42} -5 q^{-44} +2 q^{-46} +5 q^{-48} -4 q^{-52} -2 q^{-54} +2 q^{-56} +2 q^{-58} - q^{-60} - q^{-62} + q^{-66} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-9 t+15-9 t^{-1} +2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1} |
Vassiliev invariants
V2 and V3: | (-1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 14]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 14]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8],X[17, 7, 18, 6]] |
In[4]:= | GaussCode[Knot[9, 14]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5] |
In[5]:= | BR[Knot[9, 14]] |
Out[5]= | BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[9, 14]][t] |
Out[6]= | 2 9 2 |
In[7]:= | Conway[Knot[9, 14]][z] |
Out[7]= | 2 4 1 - z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 14]} |
In[9]:= | {KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]} |
Out[9]= | {37, 0} |
In[10]:= | J=Jones[Knot[9, 14]][q] |
Out[10]= | -3 3 4 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 14], Knot[11, NonAlternating, 53]} |
In[12]:= | A2Invariant[Knot[9, 14]][q] |
Out[12]= | -10 -8 -6 -4 2 2 4 8 10 12 16 18 |
In[13]:= | Kauffman[Knot[9, 14]][a, z] |
Out[13]= | 2 2 2-6 2 -2 3 z 5 z 2 z 4 z 10 z 8 z 2 2 |
In[14]:= | {Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[9, 14]][q, t] |
Out[15]= | 4 1 2 1 2 2 3 |