9 10: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=10|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,8,-9,5,-1,3,-4,6,-2,9,-8,7,-5,4,-3/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=10|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,8,-9,5,-1,3,-4,6,-2,9,-8,7,-5,4,-3/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 129: Line 121:
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:16, 28 August 2005

9 9.gif

9_9

9 11.gif

9_11

9 10.gif Visit 9 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 10's page at Knotilus!

Visit 9 10's page at the original Knot Atlas!

9 10 Quick Notes


9 10 Further Notes and Views

Knot presentations

Planar diagram presentation X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13
Gauss code 1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3
Dowker-Thistlethwaite code 8 12 14 16 18 2 6 4 10
Conway Notation [333]

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [3][-14]
Hyperbolic Volume 8.77346
A-Polynomial See Data:9 10/A-polynomial

[edit Notes for 9 10's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 10's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (8, 22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
23         1-1
21          0
19       31 -2
17      2   2
15     33   0
13    32    1
11   23     1
9  23      -1
7  2       2
512        -1
31         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 10]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 10]]
Out[3]=  
PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17], 
 X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 16, 5, 15], X[14, 6, 15, 5], 

X[6, 14, 7, 13]]
In[4]:=
GaussCode[Knot[9, 10]]
Out[4]=  
GaussCode[1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3]
In[5]:=
BR[Knot[9, 10]]
Out[5]=  
BR[4, {1, 1, 2, -1, 2, 2, 2, 2, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 10]][t]
Out[6]=  
    4    8            2

9 + -- - - - 8 t + 4 t

    2   t
t
In[7]:=
Conway[Knot[9, 10]][z]
Out[7]=  
       2      4
1 + 8 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 10]}
In[9]:=
{KnotDet[Knot[9, 10]], KnotSignature[Knot[9, 10]]}
Out[9]=  
{33, 4}
In[10]:=
J=Jones[Knot[9, 10]][q]
Out[10]=  
 2      3      4      5      6      7      8      9    10    11
q  - 2 q  + 4 q  - 5 q  + 6 q  - 5 q  + 5 q  - 3 q  + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 10]}
In[12]:=
A2Invariant[Knot[9, 10]][q]
Out[12]=  
 6    8    10      16      20    22    24    26      28    30    32

q - q + q + 2 q + 2 q + q + q + q - 2 q - q - q -

  34
q
In[13]:=
Kauffman[Knot[9, 10]][a, z]
Out[13]=  
                                 2      2      2      2      3    3
2     -8   2    4 z   4 z   11 z    2 z    7 z    2 z    4 z    z

--- + a - -- + --- - --- - ----- - ---- + ---- - ---- - ---- - --- +

10          6    13    9      10      8      6      4     13     11

a a a a a a a a a a

    3      3      3      4      4      4      4    4    5     5
 9 z    3 z    3 z    2 z    9 z    3 z    7 z    z    z     z
 ---- + ---- - ---- - ---- + ---- + ---- - ---- + -- + --- - --- - 
   9      7      5     12     10      8      6     4    13    11
  a      a      a     a      a       a      a     a    a     a

    5      5      5    6       6    6      6    7       7      7
 7 z    3 z    2 z    z     3 z    z    3 z    z     3 z    2 z
 ---- - ---- + ---- + --- - ---- - -- + ---- + --- + ---- + ---- + 
   9      7      5     12    10     8     6     11     9      7
  a      a      a     a     a      a     a     a      a      a

  8     8
 z     z
 --- + --
  10    8
a a
In[14]:=
{Vassiliev[2][Knot[9, 10]], Vassiliev[3][Knot[9, 10]]}
Out[14]=  
{0, 22}
In[15]:=
Kh[Knot[9, 10]][q, t]
Out[15]=  
 3    5      5        7  2      9  2      9  3      11  3      11  4

q + q + 2 q t + 2 q t + 2 q t + 3 q t + 2 q t + 3 q t +

    13  4      13  5      15  5      15  6      17  6      19  7
 3 q   t  + 2 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 3 q   t  + 

  19  8    23  9
q t + q t