10 139: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 70: | ||
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{33}-q^{32}-q^{31}+2 q^{30}+q^{29}-3 q^{28}+q^{27}+2 q^{26}-4 q^{25}+q^{24}+2 q^{23}-3 q^{22}+3 q^{20}-q^{19}-2 q^{18}+2 q^{17}-2 q^{15}+q^{14}+q^{11}+q^8</math>|J3=<math>-q^{63}+q^{62}+q^{61}-2 q^{59}-2 q^{58}+2 q^{57}+4 q^{56}-q^{55}-5 q^{54}+7 q^{52}+q^{51}-8 q^{50}-q^{49}+8 q^{48}+q^{47}-8 q^{46}-q^{45}+8 q^{44}+q^{43}-7 q^{42}-2 q^{41}+7 q^{40}+q^{39}-5 q^{38}-3 q^{37}+3 q^{36}+3 q^{35}-3 q^{34}-q^{33}+2 q^{31}-q^{30}+q^{29}-2 q^{26}+q^{25}+q^{24}-2 q^{22}+q^{20}+q^{16}+q^{12}</math>|J4=<math>q^{102}-q^{101}-q^{100}+3 q^{97}+q^{96}-q^{95}-3 q^{94}-5 q^{93}+3 q^{92}+6 q^{91}+3 q^{90}-2 q^{89}-9 q^{88}-4 q^{87}+7 q^{86}+9 q^{85}+q^{84}-11 q^{83}-9 q^{82}+8 q^{81}+11 q^{80}+2 q^{79}-11 q^{78}-10 q^{77}+8 q^{76}+12 q^{75}+2 q^{74}-11 q^{73}-10 q^{72}+8 q^{71}+11 q^{70}+2 q^{69}-10 q^{68}-10 q^{67}+7 q^{66}+9 q^{65}+q^{64}-5 q^{63}-9 q^{62}+4 q^{61}+5 q^{60}+2 q^{59}+2 q^{58}-8 q^{57}+q^{56}+5 q^{53}-3 q^{52}+q^{51}-3 q^{50}-4 q^{49}+4 q^{48}+3 q^{46}-q^{45}-4 q^{44}+q^{43}-q^{42}+3 q^{41}+q^{40}-2 q^{39}+q^{38}-q^{37}+q^{36}-2 q^{34}+q^{33}+q^{31}-2 q^{29}+q^{26}+q^{21}+q^{16}</math>|J5=<math>-q^{150}+q^{149}+q^{148}-q^{145}-2 q^{144}-2 q^{143}+2 q^{142}+3 q^{141}+3 q^{140}+3 q^{139}-3 q^{138}-8 q^{137}-5 q^{136}+q^{135}+5 q^{134}+11 q^{133}+6 q^{132}-5 q^{131}-12 q^{130}-12 q^{129}+14 q^{127}+17 q^{126}+5 q^{125}-14 q^{124}-21 q^{123}-9 q^{122}+13 q^{121}+23 q^{120}+10 q^{119}-12 q^{118}-24 q^{117}-12 q^{116}+12 q^{115}+25 q^{114}+12 q^{113}-12 q^{112}-25 q^{111}-12 q^{110}+12 q^{109}+25 q^{108}+12 q^{107}-12 q^{106}-25 q^{105}-12 q^{104}+12 q^{103}+24 q^{102}+12 q^{101}-11 q^{100}-23 q^{99}-11 q^{98}+10 q^{97}+19 q^{96}+12 q^{95}-5 q^{94}-18 q^{93}-11 q^{92}+4 q^{91}+11 q^{90}+13 q^{89}+q^{88}-8 q^{87}-12 q^{86}-6 q^{85}+5 q^{84}+9 q^{83}+6 q^{82}+2 q^{81}-5 q^{80}-10 q^{79}-2 q^{78}+2 q^{77}+4 q^{76}+7 q^{75}+3 q^{74}-5 q^{73}-4 q^{72}-3 q^{71}-q^{70}+3 q^{69}+4 q^{68}-q^{67}+q^{66}-q^{65}-3 q^{64}-2 q^{61}+q^{60}+2 q^{59}-q^{58}+2 q^{57}-2 q^{55}-2 q^{54}+q^{53}-q^{52}+2 q^{51}+2 q^{50}-2 q^{48}+q^{47}-q^{46}+q^{44}-2 q^{42}+q^{41}+q^{38}-2 q^{36}+q^{32}+q^{26}+q^{20}</math>|J6=<math>q^{207}-q^{206}-q^{205}+q^{202}+3 q^{200}+q^{199}-2 q^{198}-3 q^{197}-3 q^{196}-2 q^{195}-2 q^{194}+6 q^{193}+8 q^{192}+5 q^{191}-3 q^{189}-9 q^{188}-15 q^{187}-5 q^{186}+8 q^{185}+12 q^{184}+14 q^{183}+16 q^{182}-3 q^{181}-24 q^{180}-26 q^{179}-10 q^{178}+5 q^{177}+20 q^{176}+39 q^{175}+19 q^{174}-18 q^{173}-37 q^{172}-30 q^{171}-12 q^{170}+16 q^{169}+52 q^{168}+35 q^{167}-7 q^{166}-41 q^{165}-39 q^{164}-22 q^{163}+11 q^{162}+58 q^{161}+41 q^{160}-3 q^{159}-42 q^{158}-42 q^{157}-24 q^{156}+10 q^{155}+59 q^{154}+42 q^{153}-3 q^{152}-42 q^{151}-43 q^{150}-24 q^{149}+10 q^{148}+59 q^{147}+42 q^{146}-3 q^{145}-42 q^{144}-42 q^{143}-24 q^{142}+10 q^{141}+58 q^{140}+41 q^{139}-2 q^{138}-40 q^{137}-39 q^{136}-23 q^{135}+6 q^{134}+51 q^{133}+37 q^{132}+5 q^{131}-31 q^{130}-34 q^{129}-23 q^{128}-4 q^{127}+37 q^{126}+32 q^{125}+15 q^{124}-16 q^{123}-24 q^{122}-23 q^{121}-15 q^{120}+17 q^{119}+23 q^{118}+24 q^{117}-q^{116}-8 q^{115}-15 q^{114}-21 q^{113}-2 q^{112}+6 q^{111}+19 q^{110}+8 q^{109}+5 q^{108}-14 q^{106}-9 q^{105}-8 q^{104}+5 q^{103}+3 q^{102}+7 q^{101}+9 q^{100}-q^{99}-q^{98}-7 q^{97}-q^{96}-6 q^{95}-2 q^{94}+6 q^{93}+q^{92}+5 q^{91}+q^{90}+4 q^{89}-4 q^{88}-6 q^{87}+q^{86}-4 q^{85}+q^{84}+6 q^{82}-q^{80}+3 q^{79}-4 q^{78}-q^{77}-3 q^{76}+2 q^{75}-q^{74}-q^{73}+3 q^{72}-q^{71}+q^{70}-q^{69}+2 q^{68}-q^{67}-q^{66}-2 q^{64}+q^{63}-q^{62}+2 q^{61}+q^{60}+q^{59}-2 q^{57}+q^{56}-q^{55}+q^{52}-2 q^{50}+q^{49}+q^{45}-2 q^{43}+q^{38}+q^{31}+q^{24}</math>|J7=<math>-q^{273}+q^{272}+q^{271}-q^{268}-q^{266}-2 q^{265}-q^{264}+2 q^{263}+3 q^{262}+4 q^{261}+q^{260}+q^{258}-7 q^{257}-9 q^{256}-5 q^{255}+5 q^{253}+8 q^{252}+10 q^{251}+15 q^{250}+4 q^{249}-10 q^{248}-16 q^{247}-21 q^{246}-15 q^{245}-7 q^{244}+10 q^{243}+32 q^{242}+35 q^{241}+18 q^{240}+2 q^{239}-24 q^{238}-46 q^{237}-42 q^{236}-25 q^{235}+17 q^{234}+50 q^{233}+56 q^{232}+48 q^{231}+3 q^{230}-47 q^{229}-68 q^{228}-68 q^{227}-23 q^{226}+41 q^{225}+71 q^{224}+84 q^{223}+39 q^{222}-33 q^{221}-74 q^{220}-94 q^{219}-49 q^{218}+28 q^{217}+74 q^{216}+100 q^{215}+57 q^{214}-26 q^{213}-75 q^{212}-102 q^{211}-59 q^{210}+25 q^{209}+74 q^{208}+104 q^{207}+61 q^{206}-25 q^{205}-74 q^{204}-105 q^{203}-61 q^{202}+25 q^{201}+74 q^{200}+105 q^{199}+61 q^{198}-25 q^{197}-74 q^{196}-105 q^{195}-61 q^{194}+25 q^{193}+74 q^{192}+105 q^{191}+61 q^{190}-25 q^{189}-74 q^{188}-104 q^{187}-61 q^{186}+25 q^{185}+73 q^{184}+102 q^{183}+60 q^{182}-23 q^{181}-71 q^{180}-99 q^{179}-60 q^{178}+20 q^{177}+64 q^{176}+94 q^{175}+62 q^{174}-15 q^{173}-57 q^{172}-88 q^{171}-59 q^{170}+5 q^{169}+42 q^{168}+80 q^{167}+63 q^{166}+4 q^{165}-31 q^{164}-66 q^{163}-60 q^{162}-16 q^{161}+14 q^{160}+51 q^{159}+58 q^{158}+24 q^{157}+6 q^{156}-37 q^{155}-51 q^{154}-28 q^{153}-16 q^{152}+14 q^{151}+34 q^{150}+30 q^{149}+31 q^{148}+q^{147}-25 q^{146}-21 q^{145}-27 q^{144}-14 q^{143}+q^{142}+10 q^{141}+31 q^{140}+20 q^{139}+3 q^{138}+2 q^{137}-11 q^{136}-16 q^{135}-16 q^{134}-13 q^{133}+7 q^{132}+10 q^{131}+6 q^{130}+16 q^{129}+7 q^{128}+2 q^{127}-7 q^{126}-13 q^{125}-4 q^{124}-6 q^{123}-8 q^{122}+5 q^{121}+8 q^{120}+8 q^{119}+3 q^{118}+6 q^{116}-4 q^{115}-9 q^{114}-3 q^{113}-q^{112}-q^{111}-2 q^{110}+q^{109}+9 q^{108}+2 q^{107}-q^{106}+2 q^{105}+q^{104}-q^{103}-6 q^{102}-4 q^{101}+4 q^{100}-2 q^{99}-2 q^{98}+2 q^{97}+3 q^{96}+3 q^{95}-q^{94}-2 q^{93}+4 q^{92}-2 q^{91}-4 q^{90}-q^{89}-q^{88}+2 q^{87}-q^{86}-2 q^{85}+4 q^{84}+q^{83}-2 q^{82}+q^{81}-q^{80}+2 q^{79}-q^{78}-2 q^{77}+q^{76}-2 q^{74}+q^{73}-q^{72}+2 q^{71}+q^{70}+q^{68}-2 q^{66}+q^{65}-q^{64}+q^{60}-2 q^{58}+q^{57}+q^{52}-2 q^{50}+q^{44}+q^{36}+q^{28}</math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 139]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 139]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[11, 19, 12, 18], X[5, 15, 6, 14], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[11, 19, 12, 18], X[5, 15, 6, 14], |
|||
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20], |
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20], |
||
X[19, 13, 20, 12], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
X[19, 13, 20, 12], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 139]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 139]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -4, 6, -5, 7, 10, -2, -3, 9, -8, 4, -6, 5, -7, |
|||
3, -9, 8]</nowiki></pre></td></tr> |
3, -9, 8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 139]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 139]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, -14, -16, 2, -18, -20, -6, -8, -12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 139]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 1, 1, 1, 2, 2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 1, 1, 1, 2, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 139]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 139]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 139]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_139_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 139]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 4, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 139]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -3 2 3 4 |
|||
-3 + t - t + - + 2 t - t + t |
-3 + t - t + - + 2 t - t + t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 139]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 139]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
1 + 9 z + 14 z + 7 z + z</nowiki></pre></td></tr> |
1 + 9 z + 14 z + 7 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 139]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 139]], KnotSignature[Knot[10, 139]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 139]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 9 10 11 12 |
|||
q + q - q + q - q + q - q</nowiki></pre></td></tr> |
q + q - q + q - q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 139]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 139]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 139]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 14 16 18 20 22 28 32 34 36 38 40 |
|||
q + q + 2 q + 2 q + q - q - q - q - q - q + q</nowiki></pre></td></tr> |
q + q + 2 q + 2 q + q - q - q - q - q - q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 139]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 139]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 6 6 8 |
|||
-12 6 6 z 13 z 21 z 7 z 21 z z 8 z z |
|||
a - --- + -- + --- - ----- + ----- - ---- + ----- - --- + ---- + -- |
|||
10 8 12 10 8 10 8 10 8 8 |
|||
a a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 139]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 |
|||
-12 6 6 2 z z 5 z 6 z 2 z 19 z 21 z z |
-12 6 6 2 z z 5 z 6 z 2 z 19 z 21 z z |
||
a + --- + -- - --- - --- - --- - --- - ---- - ----- - ----- + --- + |
a + --- + -- - --- - --- - --- - --- - ---- - ----- - ----- + --- + |
||
Line 100: | Line 162: | ||
8 11 9 10 8 |
8 11 9 10 8 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 139]], Vassiliev[3][Knot[10, 139]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 139]], Vassiliev[3][Knot[10, 139]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{9, 25}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 11 2 15 3 13 4 15 4 15 5 17 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 139]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 11 2 15 3 13 4 15 4 15 5 17 5 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
19 5 17 6 19 6 21 7 21 8 25 9 |
19 5 17 6 19 6 21 7 21 8 25 9 |
||
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 139], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 11 14 15 17 18 19 20 22 23 |
|||
q + q + q - 2 q + 2 q - 2 q - q + 3 q - 3 q + 2 q + |
|||
24 25 26 27 28 29 30 31 32 33 |
|||
q - 4 q + 2 q + q - 3 q + q + 2 q - q - q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:02, 29 August 2005
|
|
Visit 10 139's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 139's page at Knotilus! Visit 10 139's page at the original Knot Atlas! |
10 139 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X11,19,12,18 X5,15,6,14 X7,17,8,16 X15,7,16,6 X17,9,18,8 X13,1,14,20 X19,13,20,12 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, -4, 6, -5, 7, 10, -2, -3, 9, -8, 4, -6, 5, -7, 3, -9, 8 |
Dowker-Thistlethwaite code | 4 10 -14 -16 2 -18 -20 -6 -8 -12 |
Conway Notation | [4,3,3-] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 139"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (9, 25) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 139. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.