8 9: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 16: Line 16:


{{Knot Presentations}}
{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>

[[Invariants from Braid Theory|Length]] is 8, width is 3.

[[Invariants from Braid Theory|Braid index]] is 3.
</td>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{3D Invariants}}
{{4D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[10_155]], [[K11n37]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


Line 40: Line 70:
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table>}}

{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+5 q^9-6 q^8-2 q^7+12 q^6-10 q^5-7 q^4+20 q^3-12 q^2-11 q+25-11 q^{-1} -12 q^{-2} +20 q^{-3} -7 q^{-4} -10 q^{-5} +12 q^{-6} -2 q^{-7} -6 q^{-8} +5 q^{-9} -2 q^{-11} + q^{-12} </math>|J3=<math>q^{24}-2 q^{23}+2 q^{21}+2 q^{20}-5 q^{19}-3 q^{18}+7 q^{17}+7 q^{16}-11 q^{15}-11 q^{14}+12 q^{13}+19 q^{12}-13 q^{11}-27 q^{10}+12 q^9+36 q^8-10 q^7-44 q^6+7 q^5+51 q^4-5 q^3-54 q^2+59-54 q^{-2} -5 q^{-3} +51 q^{-4} +7 q^{-5} -44 q^{-6} -10 q^{-7} +36 q^{-8} +12 q^{-9} -27 q^{-10} -13 q^{-11} +19 q^{-12} +12 q^{-13} -11 q^{-14} -11 q^{-15} +7 q^{-16} +7 q^{-17} -3 q^{-18} -5 q^{-19} +2 q^{-20} +2 q^{-21} -2 q^{-23} + q^{-24} </math>|J4=<math>q^{40}-2 q^{39}+2 q^{37}-q^{36}+3 q^{35}-7 q^{34}+q^{33}+7 q^{32}-3 q^{31}+8 q^{30}-19 q^{29}-2 q^{28}+17 q^{27}+q^{26}+20 q^{25}-39 q^{24}-16 q^{23}+21 q^{22}+12 q^{21}+53 q^{20}-54 q^{19}-44 q^{18}+4 q^{17}+20 q^{16}+105 q^{15}-53 q^{14}-72 q^{13}-31 q^{12}+15 q^{11}+159 q^{10}-40 q^9-89 q^8-64 q^7+q^6+197 q^5-25 q^4-93 q^3-86 q^2-13 q+213-13 q^{-1} -86 q^{-2} -93 q^{-3} -25 q^{-4} +197 q^{-5} + q^{-6} -64 q^{-7} -89 q^{-8} -40 q^{-9} +159 q^{-10} +15 q^{-11} -31 q^{-12} -72 q^{-13} -53 q^{-14} +105 q^{-15} +20 q^{-16} +4 q^{-17} -44 q^{-18} -54 q^{-19} +53 q^{-20} +12 q^{-21} +21 q^{-22} -16 q^{-23} -39 q^{-24} +20 q^{-25} + q^{-26} +17 q^{-27} -2 q^{-28} -19 q^{-29} +8 q^{-30} -3 q^{-31} +7 q^{-32} + q^{-33} -7 q^{-34} +3 q^{-35} - q^{-36} +2 q^{-37} -2 q^{-39} + q^{-40} </math>|J5=<math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+q^{54}-3 q^{53}+6 q^{51}-5 q^{49}-2 q^{48}-5 q^{47}+2 q^{46}+14 q^{45}+9 q^{44}-7 q^{43}-16 q^{42}-19 q^{41}-3 q^{40}+28 q^{39}+34 q^{38}+12 q^{37}-24 q^{36}-55 q^{35}-37 q^{34}+19 q^{33}+67 q^{32}+70 q^{31}+9 q^{30}-78 q^{29}-110 q^{28}-45 q^{27}+71 q^{26}+147 q^{25}+100 q^{24}-52 q^{23}-182 q^{22}-156 q^{21}+19 q^{20}+204 q^{19}+216 q^{18}+21 q^{17}-217 q^{16}-268 q^{15}-64 q^{14}+221 q^{13}+312 q^{12}+101 q^{11}-218 q^{10}-341 q^9-138 q^8+211 q^7+370 q^6+158 q^5-206 q^4-372 q^3-183 q^2+188 q+393+188 q^{-1} -183 q^{-2} -372 q^{-3} -206 q^{-4} +158 q^{-5} +370 q^{-6} +211 q^{-7} -138 q^{-8} -341 q^{-9} -218 q^{-10} +101 q^{-11} +312 q^{-12} +221 q^{-13} -64 q^{-14} -268 q^{-15} -217 q^{-16} +21 q^{-17} +216 q^{-18} +204 q^{-19} +19 q^{-20} -156 q^{-21} -182 q^{-22} -52 q^{-23} +100 q^{-24} +147 q^{-25} +71 q^{-26} -45 q^{-27} -110 q^{-28} -78 q^{-29} +9 q^{-30} +70 q^{-31} +67 q^{-32} +19 q^{-33} -37 q^{-34} -55 q^{-35} -24 q^{-36} +12 q^{-37} +34 q^{-38} +28 q^{-39} -3 q^{-40} -19 q^{-41} -16 q^{-42} -7 q^{-43} +9 q^{-44} +14 q^{-45} +2 q^{-46} -5 q^{-47} -2 q^{-48} -5 q^{-49} +6 q^{-51} -3 q^{-53} + q^{-54} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math>|J6=<math>q^{84}-2 q^{83}+2 q^{81}-q^{80}-2 q^{78}+5 q^{77}-4 q^{76}-q^{75}+8 q^{74}-4 q^{73}-4 q^{72}-9 q^{71}+12 q^{70}-5 q^{69}+2 q^{68}+23 q^{67}-5 q^{66}-13 q^{65}-31 q^{64}+15 q^{63}-13 q^{62}+8 q^{61}+60 q^{60}+15 q^{59}-13 q^{58}-68 q^{57}-3 q^{56}-57 q^{55}-9 q^{54}+107 q^{53}+79 q^{52}+42 q^{51}-73 q^{50}-19 q^{49}-163 q^{48}-108 q^{47}+93 q^{46}+146 q^{45}+172 q^{44}+32 q^{43}+60 q^{42}-272 q^{41}-302 q^{40}-68 q^{39}+107 q^{38}+298 q^{37}+249 q^{36}+310 q^{35}-265 q^{34}-491 q^{33}-357 q^{32}-103 q^{31}+302 q^{30}+470 q^{29}+687 q^{28}-100 q^{27}-566 q^{26}-651 q^{25}-416 q^{24}+164 q^{23}+590 q^{22}+1052 q^{21}+143 q^{20}-522 q^{19}-847 q^{18}-696 q^{17}-31 q^{16}+605 q^{15}+1305 q^{14}+348 q^{13}-430 q^{12}-936 q^{11}-867 q^{10}-188 q^9+570 q^8+1436 q^7+466 q^6-349 q^5-959 q^4-941 q^3-283 q^2+525 q+1477+525 q^{-1} -283 q^{-2} -941 q^{-3} -959 q^{-4} -349 q^{-5} +466 q^{-6} +1436 q^{-7} +570 q^{-8} -188 q^{-9} -867 q^{-10} -936 q^{-11} -430 q^{-12} +348 q^{-13} +1305 q^{-14} +605 q^{-15} -31 q^{-16} -696 q^{-17} -847 q^{-18} -522 q^{-19} +143 q^{-20} +1052 q^{-21} +590 q^{-22} +164 q^{-23} -416 q^{-24} -651 q^{-25} -566 q^{-26} -100 q^{-27} +687 q^{-28} +470 q^{-29} +302 q^{-30} -103 q^{-31} -357 q^{-32} -491 q^{-33} -265 q^{-34} +310 q^{-35} +249 q^{-36} +298 q^{-37} +107 q^{-38} -68 q^{-39} -302 q^{-40} -272 q^{-41} +60 q^{-42} +32 q^{-43} +172 q^{-44} +146 q^{-45} +93 q^{-46} -108 q^{-47} -163 q^{-48} -19 q^{-49} -73 q^{-50} +42 q^{-51} +79 q^{-52} +107 q^{-53} -9 q^{-54} -57 q^{-55} -3 q^{-56} -68 q^{-57} -13 q^{-58} +15 q^{-59} +60 q^{-60} +8 q^{-61} -13 q^{-62} +15 q^{-63} -31 q^{-64} -13 q^{-65} -5 q^{-66} +23 q^{-67} +2 q^{-68} -5 q^{-69} +12 q^{-70} -9 q^{-71} -4 q^{-72} -4 q^{-73} +8 q^{-74} - q^{-75} -4 q^{-76} +5 q^{-77} -2 q^{-78} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math>|J7=<math>q^{112}-2 q^{111}+2 q^{109}-q^{108}-2 q^{106}+2 q^{105}+4 q^{104}-5 q^{103}+q^{102}+4 q^{101}-4 q^{100}-2 q^{99}-8 q^{98}+q^{97}+16 q^{96}-3 q^{95}+5 q^{94}+8 q^{93}-11 q^{92}-6 q^{91}-29 q^{90}-11 q^{89}+32 q^{88}+10 q^{87}+28 q^{86}+27 q^{85}-15 q^{84}-12 q^{83}-71 q^{82}-61 q^{81}+24 q^{80}+16 q^{79}+79 q^{78}+92 q^{77}+27 q^{76}+21 q^{75}-113 q^{74}-156 q^{73}-70 q^{72}-69 q^{71}+85 q^{70}+191 q^{69}+158 q^{68}+185 q^{67}-27 q^{66}-203 q^{65}-227 q^{64}-336 q^{63}-117 q^{62}+140 q^{61}+270 q^{60}+503 q^{59}+329 q^{58}+30 q^{57}-227 q^{56}-661 q^{55}-601 q^{54}-292 q^{53}+72 q^{52}+736 q^{51}+878 q^{50}+659 q^{49}+227 q^{48}-711 q^{47}-1129 q^{46}-1075 q^{45}-631 q^{44}+549 q^{43}+1283 q^{42}+1492 q^{41}+1138 q^{40}-257 q^{39}-1345 q^{38}-1870 q^{37}-1666 q^{36}-122 q^{35}+1287 q^{34}+2159 q^{33}+2185 q^{32}+554 q^{31}-1140 q^{30}-2362 q^{29}-2642 q^{28}-984 q^{27}+942 q^{26}+2477 q^{25}+3009 q^{24}+1367 q^{23}-721 q^{22}-2511 q^{21}-3289 q^{20}-1694 q^{19}+513 q^{18}+2513 q^{17}+3488 q^{16}+1926 q^{15}-347 q^{14}-2473 q^{13}-3596 q^{12}-2106 q^{11}+194 q^{10}+2437 q^9+3692 q^8+2217 q^7-126 q^6-2389 q^5-3694 q^4-2294 q^3+13 q^2+2343 q+3751+2343 q^{-1} +13 q^{-2} -2294 q^{-3} -3694 q^{-4} -2389 q^{-5} -126 q^{-6} +2217 q^{-7} +3692 q^{-8} +2437 q^{-9} +194 q^{-10} -2106 q^{-11} -3596 q^{-12} -2473 q^{-13} -347 q^{-14} +1926 q^{-15} +3488 q^{-16} +2513 q^{-17} +513 q^{-18} -1694 q^{-19} -3289 q^{-20} -2511 q^{-21} -721 q^{-22} +1367 q^{-23} +3009 q^{-24} +2477 q^{-25} +942 q^{-26} -984 q^{-27} -2642 q^{-28} -2362 q^{-29} -1140 q^{-30} +554 q^{-31} +2185 q^{-32} +2159 q^{-33} +1287 q^{-34} -122 q^{-35} -1666 q^{-36} -1870 q^{-37} -1345 q^{-38} -257 q^{-39} +1138 q^{-40} +1492 q^{-41} +1283 q^{-42} +549 q^{-43} -631 q^{-44} -1075 q^{-45} -1129 q^{-46} -711 q^{-47} +227 q^{-48} +659 q^{-49} +878 q^{-50} +736 q^{-51} +72 q^{-52} -292 q^{-53} -601 q^{-54} -661 q^{-55} -227 q^{-56} +30 q^{-57} +329 q^{-58} +503 q^{-59} +270 q^{-60} +140 q^{-61} -117 q^{-62} -336 q^{-63} -227 q^{-64} -203 q^{-65} -27 q^{-66} +185 q^{-67} +158 q^{-68} +191 q^{-69} +85 q^{-70} -69 q^{-71} -70 q^{-72} -156 q^{-73} -113 q^{-74} +21 q^{-75} +27 q^{-76} +92 q^{-77} +79 q^{-78} +16 q^{-79} +24 q^{-80} -61 q^{-81} -71 q^{-82} -12 q^{-83} -15 q^{-84} +27 q^{-85} +28 q^{-86} +10 q^{-87} +32 q^{-88} -11 q^{-89} -29 q^{-90} -6 q^{-91} -11 q^{-92} +8 q^{-93} +5 q^{-94} -3 q^{-95} +16 q^{-96} + q^{-97} -8 q^{-98} -2 q^{-99} -4 q^{-100} +4 q^{-101} + q^{-102} -5 q^{-103} +4 q^{-104} +2 q^{-105} -2 q^{-106} - q^{-108} +2 q^{-109} -2 q^{-111} + q^{-112} </math>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 47: Line 80:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[10, 3, 11, 4], X[2, 13, 3, 14],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[10, 3, 11, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[4, 11, 5, 12], X[16, 10, 1, 9], X[8, 16, 9, 15]]</nowiki></pre></td></tr>
X[12, 5, 13, 6], X[4, 11, 5, 12], X[16, 10, 1, 9], X[8, 16, 9, 15]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 12, 14, 16, 4, 2, 8]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 9]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 5 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 1, 3, 2, {3, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 9]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 5 2 3
7 - t + -- - - - 5 t + 3 t - t
7 - t + -- - - - 5 t + 3 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 9]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 9]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - 2 z - 3 z - z</nowiki></pre></td></tr>
1 - 2 z - 3 z - z</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 9]], KnotSignature[Knot[8, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[8, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 9]], KnotSignature[Knot[8, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 3 4 2 3 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 3 4 2 3 4
5 + q - -- + -- - - - 4 q + 3 q - 2 q + q
5 + q - -- + -- - - - 4 q + 3 q - 2 q + q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 9]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -8 -4 -2 2 4 8 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 9]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -8 -4 -2 2 4 8 12
-1 + q + q - q + q + q - q + q + q</nowiki></pre></td></tr>
-1 + q + q - q + q + q - q + q + q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 9]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 9]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
2 2 2 3 z 2 2 4 z 2 4 6
-3 + -- + 2 a - 8 z + ---- + 3 a z - 5 z + -- + a z - z
2 2 2
a a a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 9]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
2 2 z z 3 2 2 z 4 z 2 2
2 2 z z 3 2 2 z 4 z 2 2
-3 - -- - 2 a + -- + - + a z + a z + 12 z - ---- + ---- + 4 a z -
-3 - -- - 2 a + -- + - + a z + a z + 12 z - ---- + ---- + 4 a z -
Line 99: Line 161:
3 2 a
3 2 a
a a</nowiki></pre></td></tr>
a a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 9]], Vassiliev[3][Knot[8, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 9]], Vassiliev[3][Knot[8, 9]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 9]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 1 1 2 1 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 9]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 1 1 2 1 2 2
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t +
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q 9 4 7 3 5 3 5 2 3 2 3 q t
Line 109: Line 173:
3 3 2 5 2 5 3 7 3 9 4
3 3 2 5 2 5 3 7 3 9 4
2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr>
2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 9], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 5 6 2 12 10 7 20 12 11
25 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 11 q -
11 9 8 7 6 5 4 3 2 q
q q q q q q q q q
2 3 4 5 6 7 8 9 11
12 q + 20 q - 7 q - 10 q + 12 q - 2 q - 6 q + 5 q - 2 q +
12
q</nowiki></pre></td></tr>

</table>
</table>

See/edit the [[Rolfsen_Splice_Template]].


[[Category:Knot Page]]
[[Category:Knot Page]]

Revision as of 17:06, 29 August 2005

8 8.gif

8_8

8 10.gif

8_10

8 9.gif Visit 8 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 9's page at Knotilus!

Visit 8 9's page at the original Knot Atlas!

8 9 Quick Notes


8 9 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X14,8,15,7 X10,3,11,4 X2,13,3,14 X12,5,13,6 X4,11,5,12 X16,10,1,9 X8,16,9,15
Gauss code 1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7
Dowker-Thistlethwaite code 6 10 12 14 16 4 2 8
Conway Notation [3113]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Length is 8, width is 3.

Braid index is 3.

A Morse Link Presentation:

8 9 ML.gif

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-5]
Hyperbolic Volume 7.58818
A-Polynomial See Data:8 9/A-polynomial

[edit Notes for 8 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_155, K11n37, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234χ
9        11
7       1 -1
5      21 1
3     21  -1
1    32   1
-1   23    1
-3  12     -1
-5 12      1
-7 1       -1
-91        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials